Advertisements
Advertisements
प्रश्न
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(2π), where π = 3.14
उत्तर
f(x) = 4[x] − 3
f(2π) = 4[2π] − 3
= 4[6.28] − 3 ...[∵ π = 3.14]
= 4(6) − 3 ...`[(because 6 ≤ 6.28 < 7),(therefore [6.28] = 6)]`
= 21
APPEARS IN
संबंधित प्रश्न
If f(x) = 2x2 + 3, g (x) = 5x − 2, then find f ° g
If f(x) = 2x2 + 3, g(x) = 5x − 2, then find f ° f
If f(x) = 2x2 + 3, g (x) = 5x − 2, then find g ° g
Verify that f and g are inverse functions of each other, where f(x) = x3 + 4, g(x) = `root(3)(x - 4)`
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = `(6x - 7)/3`
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = 9x3 + 8
If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(3)
If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(0)
If f(x) = 2|x| + 3x, then find f(2)
If f(x) = 2|x| + 3x, then find f(– 5)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(7.2)
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find `"f"(1/4)`
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 6)
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
|x + 4| ≥ 5
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
[x + [x + [x]]] = 9
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
{x} = 0
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
{x} = 0.5
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
2{x} = x + [x]
Answer the following:
Find composite of f and g:
f = {(1, 3), (2, 4), (3, 5), (4, 6)}
g = {(3, 6), (4, 8), (5, 10), (6, 12)}
Answer the following:
Find f ° g and g ° f: f(x) = 3x – 2, g(x) = x2
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
1 < |x − 1| < 4
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
|x2 − 9| + |x2 − 4| = 5
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
−2 < [x] ≤ 7
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
`[x/2] + [x/3] = (5x)/6`
Answer the following:
Find (f ° f) (x) if f(x) = `(2x + 1)/(3x - 2)`
If `a + pi/2 < 2tan^-1x + 3cot^-1x < b`, then a and b are respectively.
If f(x) = `sin^2x + sin^2(x + pi/3) + cosx cos(x + pi/3) and g(5/4) = 1`, then (gof)(x) is equal to: ______
If f(x) =bx - 7 and f(-1) = 4, then b = ______.
If f(x) =x4, g(x) = 6x – 2, then g[f(x)] = ______.
If g(x) is the inverse function of f(x) and f'(x) = `1/(1 + x^4)`, then g'(x) is ______.
`int_0^3 [x]dx` = ______, where [x] is greatest integer function.