हिंदी

Answer the following: Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function |x2 − 9| + |x2 − 4| = 5 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

|x2 − 9| + |x2 − 4| = 5

योग

उत्तर

|x2 − 9| + |x2 − 4| = 5

Case 1: x < − 3

If x < − 3, then x2 > 9

∴ |x2 − 9| = x2 − 9 and |x2 − 4| = x2 − 4

∴ equation becomes,

∴ x2 − 9 + x2 − 4 = 5

∴ 2x2 = 18

∴ x2 = 9

∴ x = ± 3

But x < − 3, therefore x ≠ ± 3.

Case 2: − 3 ≤ x < − 2

If − 3 ≤ x < − 2, then 4 < x2 ≤ 9

∴ |x2 − 9| = 9 − x2 and |x2 − 4| = x2 − 4

∴ equation becomes,

9 − x2 + x2 − 4 = 5

∴ 5 = 5, which is true

∴ − 3 ≤ x < − 2 is the solution    ...(1)

Case 3: − 2 ≤ x < 2

If − 2 ≤ x < 2, then 0 ≤ x2 < 4

∴ |x2 − 9| = 9 − x2 and |x2 − 4| = 4 − x2 

∴ equation becomes,

9 − x2 + 4 − x2  = 5

∴ 2x2 = 8

∴ x2 = 4

∴ x = ± 2

But − 2 ≤ x < 2

∴ x ≠ 2

∴ x = − 2 is a solution    ...(2)

Case 4: 2 ≤ x < 3

If 2 ≤ x < 3, then 4 ≤ x < 9

∴ |x2 − 9| = 9 − x2 and |x2 − 4| = x2 − 4

∴ equation becomes,

9 − x2 +  x2 − 4 = 5

∴ 5 = 5, which is true

∴ 2 ≤ x < 3 is the solution   ...(3)

Case 5: x ≥ 3

If x ≥ 3, then x2 ≥ 9

∴ |x2 − 9| = x2 − 9 and |x2 − 4| = x2 − 4

∴ equation becomes,

x2 − 9 + x2 − 4 = 5

∴ 2x2 = 18

∴ x2 = 9

∴ x = ± 3

But x ≥ 3, therefore x ≠ −3.

∴  x = 3 is a solution     ...(4)

From (1), (2), (3) and (4),

the solution set = [− 3, − 2] ∪ [2, 3].

shaalaa.com
Algebra of Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Functions - Miscellaneous Exercise 6.2 [पृष्ठ १३१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 6 Functions
Miscellaneous Exercise 6.2 | Q II. (39) (c) | पृष्ठ १३१

संबंधित प्रश्न

If f(x) = 2x2 + 3, g(x) = 5x − 2, then find f ° f


If f(x) = 2x2 + 3, g (x) = 5x − 2, then find g ° g


Verify that f and g are inverse functions of each other, where f(x) = x3 + 4, g(x) = `root(3)(x - 4)`


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = 5x2


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = 8


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `sqrt(4x + 5)`


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `{(x + 7, x < 0),(8 - x, x ≥ 0):}`


If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(0)


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(– 4)


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(– 3)


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(1)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(7.2)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(0.5)


If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 1)


If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 1.2)


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

2|x| = 5


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

{x} > 4


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

{x} = 0.5


Answer the following:

Find whether the following function is onto or not.

f : R → R defined by f(x) = x2 + 3 for all x ∈ R


Answer the following:

Find f ° g and g ° f : f(x) = x2 + 5, g(x) = x – 8


Answer the following:

If f(x) = `(x + 3)/(4x - 5)`, g(x) = `(3 + 5x)/(4x - 1)` then show that (f ° g) (x) = x


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

1 < |x − 1| < 4


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

|x2 − x − 6| = x + 2


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

2[2x − 5] − 1 = 7


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

[x − 2] + [x + 2] + {x} = 0


Answer the following:

Find (f ° g) (x) and (g ° f) (x)

f(x) = ex, g(x) = log x


If f(x) =bx - 7 and f(-1) = 4, then b = ______.


If f(x) =x4, g(x) = 6x – 2, then g[f(x)] = ______.


Let f(x) = 1 + x, g(x) = x2 + x + 1, then (f + g) (x) at x = 0 is ______.


The inverse of f(x) = `2/3 (10^x - 10^-x)/(10^x + 10^-x)` is ______.


`int_0^3 [x]dx` = ______, where [x] is greatest integer function.


The value of `int_-1^3 (|x - 2| + [x])  dx` is equal to ______.

(where [.] denotes greatest integer function)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×