Advertisements
Advertisements
प्रश्न
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
−2 < [x] ≤ 7
उत्तर
−2 < [x] ≤ 7
∴ −1 ≤ x < 8
Solution set = [–1, 8)
APPEARS IN
संबंधित प्रश्न
If f(x) = 2x2 + 3, g (x) = 5x − 2, then find f ° g
Verify that f and g are inverse functions of each other, where f(x) = `(x - 7)/4`, g(x) = 4x + 7
Verify that f and g are inverse functions of each other, where f(x) = x3 + 4, g(x) = `root(3)(x - 4)`
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = 8
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = `(6x - 7)/3`
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = 9x3 + 8
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = `{(x + 7, x < 0),(8 - x, x ≥ 0):}`
If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(3)
If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(– 4)
If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(1)
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 1)
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 1.2)
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 6)
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
|x − 4| + |x − 2| = 3
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
x2 + 7 |x| + 12 = 0
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
|x| ≤ 3
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
{x} > 4
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
{x} = 0
Answer the following:
Find whether the following function is onto or not.
f : R → R defined by f(x) = x2 + 3 for all x ∈ R
Answer the following:
Find composite of f and g:
f = {(1, 1), (2, 4), (3, 4), (4, 3)}
g = {(1, 1), (3, 27), (4, 64)}
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
|x2 − 9| + |x2 − 4| = 5
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
2[2x − 5] − 1 = 7
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
`[x/2] + [x/3] = (5x)/6`
Answer the following:
Find the domain of the following function.
f(x) = `sqrt(1 - sqrt(1 - sqrt(1 - x^2)`
Answer the following:
Find (f ° g) (x) and (g ° f) (x)
f(x) = ex, g(x) = log x
Answer the following:
Find f(x) if g(x) = x2 + x – 2 and (g ° f) (x) = 4x2 – 10x + 4
Answer the following:
Find f(x) if g(x) = `1 + sqrt(x)` and f[g(x)] = `3 + 2sqrt(x) + x`
Answer the following:
Find (f ° f) (x) if f(x) = `x/sqrt(1 + x^2)`
`int_0^4 x[x] dx`, where [.] denotes the greatest integer function, equals ______
If f = {(4, 1), (5, 2), (6, 3)} and g = { (3, 9), (1, 7), (2, 8)}, then gof is ______
Let F(x) = ex, G(x) = e-x and H(x) = G[F(x)], where x is a real variable. Then `"dH"/"dx"`at x = 0 is ______.
Let f(x) = 1 + x, g(x) = x2 + x + 1, then (f + g) (x) at x = 0 is ______.
If g(x) is the inverse function of f(x) and f'(x) = `1/(1 + x^4)`, then g'(x) is ______.