Advertisements
Advertisements
प्रश्न
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
{x} = 0
उत्तर
{x} = 0
∴ x is an integer
∴ The solution set is Z.
APPEARS IN
संबंधित प्रश्न
If f(x) = 2x2 + 3, g(x) = 5x − 2, then find g ° f
If f(x) = 2x2 + 3, g (x) = 5x − 2, then find g ° g
Verify that f and g are inverse functions of each other, where f(x) = `(x - 7)/4`, g(x) = 4x + 7
Verify that f and g are inverse functions of each other, where f(x) = `(x + 3)/(x - 2)`, g(x) = `(2x + 3)/(x - 1)`
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = 5x2
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = 9x3 + 8
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = `{(x + 7, x < 0),(8 - x, x ≥ 0):}`
If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(2)
If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(0)
If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(– 4)
If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(– 3)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(0.5)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(2π), where π = 3.14
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 1)
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 1.2)
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
2|x| = 5
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
{x} = 0.5
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
2{x} = x + [x]
Answer the following:
Find composite of f and g:
f = {(1, 3), (2, 4), (3, 5), (4, 6)}
g = {(3, 6), (4, 8), (5, 10), (6, 12)}
Answer the following:
Find f ° g and g ° f : f(x) = x2 + 5, g(x) = x – 8
Answer the following:
Find f ° g and g ° f: f(x) = 3x – 2, g(x) = x2
Answer the following:
Find f ° g and g ° f: f(x) = 256x4, g(x) = `sqrt(x)`
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
1 < |x − 1| < 4
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
|x2 − 9| + |x2 − 4| = 5
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
[x2] − 5[x] + 6 = 0
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
[x − 2] + [x + 2] + {x} = 0
Answer the following:
Find the domain of the following function.
f(x) = `sqrt(1 - sqrt(1 - sqrt(1 - x^2)`
Answer the following:
Find f(x) if g(x) = x2 + x – 2 and (g ° f) (x) = 4x2 – 10x + 4
Answer the following:
Find f(x) if g(x) = `1 + sqrt(x)` and f[g(x)] = `3 + 2sqrt(x) + x`
Answer the following:
Find (f ° f) (x) if f(x) = `x/sqrt(1 + x^2)`
`int_0^4 x[x] dx`, where [.] denotes the greatest integer function, equals ______
If f = {(4, 1), (5, 2), (6, 3)} and g = { (3, 9), (1, 7), (2, 8)}, then gof is ______
Let F(x) = ex, G(x) = e-x and H(x) = G[F(x)], where x is a real variable. Then `"dH"/"dx"`at x = 0 is ______.
If f(x) = `sin^2x + sin^2(x + pi/3) + cosx cos(x + pi/3) and g(5/4) = 1`, then (gof)(x) is equal to: ______
lf f : [1, ∞) `rightarrow` [2, ∞) is given by f(x) = `x + 1/x`, then f–1(x) is equal to ______.
The value of `int_-1^3 (|x - 2| + [x]) dx` is equal to ______.
(where [.] denotes greatest integer function)