हिंदी

Answer the following: Find composite of f and g:f = {(1, 3), (2, 4), (3, 5), (4, 6)} g = {(3, 6), (4, 8), (5, 10), (6, 12)} - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Find composite of f and g:
f = {(1, 3), (2, 4), (3, 5), (4, 6)}
g = {(3, 6), (4, 8), (5, 10), (6, 12)}

योग

उत्तर

f = {(1, 3), (2, 4), (3, 5), (4, 6)}

g = {(3, 6), (4, 8), (5, 10), (6, 12)}

∴ f(1) = 3, f(2) = 4, f(3) = 5, f(4) = 6

∴ g(3) = 6, g(4) = 8, g(5) = 10, g(6) = 12

(g ° f) (x) = g(f(x))

(g ° f) (1) = g (f(1)) = g (3) = 6

(g ° f) (2) = g (f(2)) = g (4) = 8

(g ° f) (3) = g (f(3)) = g (5) = 10

(g ° f) (4) = g (f(4)) = g (6) = 12

∴ g ° f = {(1, 6), (2, 8), (3, 10), (4, 12)}

shaalaa.com
Algebra of Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Functions - Miscellaneous Exercise 6.2 [पृष्ठ १३०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 6 Functions
Miscellaneous Exercise 6.2 | Q II. (11) (i) | पृष्ठ १३०

संबंधित प्रश्न

Let f : {2, 4, 5} → {2, 3, 6} and g : {2, 3, 6} → {2, 4} be given by f = {(2, 3), (4, 6), (5, 2)} and g = {(2, 4), (3, 4), (6, 2)}. Write down g ° f


If f(x) = 2x2 + 3, g (x) = 5x − 2, then find f ° g


If f(x) = 2x2 + 3, g(x) = 5x − 2, then find g ° f


Verify that f and g are inverse functions of each other, where f(x) = `(x - 7)/4`, g(x) = 4x + 7


Verify that f and g are inverse functions of each other, where f(x) = x3 + 4, g(x) = `root(3)(x - 4)`


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = 8


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `(6x - 7)/3`


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = 9x3 + 8


If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(2)


If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(0)


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(– 4)


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(1)


If f(x) = 2|x| + 3x, then find f(2)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(2π), where π = 3.14


If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 1)


If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find `"f"(1/4)`


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

|x| ≤ 3


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

[x + [x + [x]]] = 9


Answer the following:

Find whether the following function is onto or not.

f : Z → Z defined by f(x) = 6x – 7 for all x ∈ Z


Answer the following:

If f(x) = `(x + 3)/(4x - 5)`, g(x) = `(3 + 5x)/(4x - 1)` then show that (f ° g) (x) = x


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

|x2 − x − 6| = x + 2


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

|x2 − 9| + |x2 − 4| = 5


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

2[2x − 5] − 1 = 7


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

[x2] − 5[x] + 6 = 0


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(1 - sqrt(1 - sqrt(1 - x^2)`


Answer the following:

Find (f ° f) (x) if f(x) = `x/sqrt(1 + x^2)`


Answer the following:

Find (f ° f) (x) if f(x) = `(2x + 1)/(3x - 2)`


The inverse of the function y = `(16^x - 16^-x)/(16^x + 16^-x)` is


If `a + pi/2 < 2tan^-1x + 3cot^-1x < b`, then a and b are respectively.


`int_0^4 x[x]  dx`, where [.] denotes the greatest integer function, equals ______


Let F(x) = ex, G(x) = e-x and H(x) = G[F(x)], where x is a real variable. Then `"dH"/"dx"`at x = 0 is ______.


Inverse of the function y = 5 – 10x is ______.


Let f(x) = 1 + x, g(x) = x2 + x + 1, then (f + g) (x) at x = 0 is ______.


lf f : [1, ∞) `rightarrow` [2, ∞) is given by f(x) = `x + 1/x`, then f–1(x) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×