हिंदी

Verify that f and g are inverse functions of each other, where f(x) = x-74, g(x) = 4x + 7 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Verify that f and g are inverse functions of each other, where f(x) = `(x - 7)/4`, g(x) = 4x + 7

योग

उत्तर

f(x) = `(x - 7)/4`, g(x) = 4x + 7

f[g(x)] = `(g(x) -7)/4`

=` (4x + 7 - 7)/4`

= x

f[g(x)] = f(4x + 7)

Replacing x by f(x), we get

`g[f(x)]= 4f(x) + 7= 4((x - 7)/4) + 7 = x`

∴ f and g are inverse functions of each other.

shaalaa.com
Algebra of Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Functions - Exercise 6.2 [पृष्ठ १२७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 6 Functions
Exercise 6.2 | Q 4. (a) | पृष्ठ १२७

संबंधित प्रश्न

If f(x) = 2x2 + 3, g(x) = 5x − 2, then find g ° f


If f(x) = 2x2 + 3, g(x) = 5x − 2, then find f ° f


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `(6x - 7)/3`


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `sqrt(4x + 5)`


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = 9x3 + 8


If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(0)


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(1)


If f(x) = 2|x| + 3x, then find f(2)


If f(x) = 2|x| + 3x, then find f(– 5)


If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 6)


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

|x + 4| ≥ 5


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

|x − 4| + |x − 2| = 3


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

x2 + 7 |x| + 12 = 0


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

|x| ≤ 3


Answer the following:

Find whether the following function is onto or not.

f : Z → Z defined by f(x) = 6x – 7 for all x ∈ Z


Answer the following:

Find whether the following function is onto or not.

f : R → R defined by f(x) = x2 + 3 for all x ∈ R


Answer the following:

Find composite of f and g:
f = {(1, 3), (2, 4), (3, 5), (4, 6)}
g = {(3, 6), (4, 8), (5, 10), (6, 12)}


Answer the following:

Find composite of f and g:
f = {(1, 1), (2, 4), (3, 4), (4, 3)}
g = {(1, 1), (3, 27), (4, 64)}


Answer the following:

Find f ° g and g ° f: f(x) = 3x – 2, g(x) = x2


Answer the following:

If f(x) = `(2x - 1)/(5x - 2), x ≠ 5/2` show that (f ° f) (x) = x


Answer the following:

If f(x) = `(x + 3)/(4x - 5)`, g(x) = `(3 + 5x)/(4x - 1)` then show that (f ° g) (x) = x


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

1 < |x − 1| < 4


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

|x2 − 9| + |x2 − 4| = 5


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

[x2] − 5[x] + 6 = 0


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(1 - sqrt(1 - sqrt(1 - x^2)`


Answer the following:

Find (f ° g) (x) and (g ° f) (x)

f(x) = ex, g(x) = log x


Answer the following:

Find f(x) if g(x) = x2 + x – 2 and (g ° f) (x) = 4x2 – 10x + 4


If `a + pi/2 < 2tan^-1x + 3cot^-1x < b`, then a and b are respectively.


If f = {(4, 1), (5, 2), (6, 3)} and g = { (3, 9), (1, 7), (2, 8)}, then gof is ______ 


If f(x) = `sin^2x + sin^2(x + pi/3) + cosx cos(x + pi/3) and g(5/4) = 1`, then (gof)(x) is equal to: ______ 


The inverse of f(x) = `2/3 (10^x - 10^-x)/(10^x + 10^-x)` is ______.


lf f : [1, ∞) `rightarrow` [2, ∞) is given by f(x) = `x + 1/x`, then f–1(x) is equal to ______.


The value of `int_-1^3 (|x - 2| + [x])  dx` is equal to ______.

(where [.] denotes greatest integer function)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×