हिंदी

Answer the following: Find the domain of the following function. f(x) = 1-1-1-x2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Find the domain of the following function.

f(x) = `sqrt(1 - sqrt(1 - sqrt(1 - x^2)`

योग

उत्तर

f(x) = `sqrt(1 - sqrt(1 - sqrt(1 - x^2)`

f(x) is defined if 1 – x2 ≥ 0, `1 - sqrt(1 - x^2) ≥ 0` and `1 - sqrt(1 - sqrt(1 - x^2)) ≥ 0`

If 1 – x2 ≥ 0, then x2 ≤ 1 i.e., – 1 ≤ x ≤ 1

If – 1 ≤ x ≤ 1, then `1 - sqrt(1 - x^2) ≥ 0` and `1 - sqrt(1 - sqrt(1 - x^2)) ≥ 0`.

∴ Domain = [– 1, 1].

shaalaa.com
Algebra of Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Functions - Miscellaneous Exercise 6.2 [पृष्ठ १३२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 6 Functions
Miscellaneous Exercise 6.2 | Q II. (40) (c) | पृष्ठ १३२

संबंधित प्रश्न

If f(x) = 2x2 + 3, g (x) = 5x − 2, then find f ° g


If f(x) = 2x2 + 3, g(x) = 5x − 2, then find g ° f


Verify that f and g are inverse functions of each other, where f(x) = `(x - 7)/4`, g(x) = 4x + 7


Verify that f and g are inverse functions of each other, where f(x) = x3 + 4, g(x) = `root(3)(x - 4)`


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = 8


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `sqrt(4x + 5)`


If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(2)


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(– 4)


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(– 3)


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(5)


If f(x) = 2|x| + 3x, then find f(2)


If f(x) = 2|x| + 3x, then find f(– 5)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find `"f"(- 5/2)`


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

|x + 4| ≥ 5


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

{x} > 4


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

{x} = 0


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

2{x} = x + [x]


Answer the following:

Find composite of f and g:
f = {(1, 1), (2, 4), (3, 4), (4, 3)}
g = {(1, 1), (3, 27), (4, 64)}


Answer the following:

Find f ° g and g ° f : f(x) = x2 + 5, g(x) = x – 8


Answer the following:

Find f ° g and g ° f: f(x) = 256x4, g(x) = `sqrt(x)`


Answer the following:

If f(x) = `(2x - 1)/(5x - 2), x ≠ 5/2` show that (f ° f) (x) = x


Answer the following:

If f(x) = `(x + 3)/(4x - 5)`, g(x) = `(3 + 5x)/(4x - 1)` then show that (f ° g) (x) = x


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

|x2 − x − 6| = x + 2


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

2[2x − 5] − 1 = 7


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

[x − 2] + [x + 2] + {x} = 0


Answer the following:

Find (f ° g) (x) and (g ° f) (x)

f(x) = ex, g(x) = log x


Answer the following:

Find f(x) if g(x) = x2 + x – 2 and (g ° f) (x) = 4x2 – 10x + 4


The inverse of the function y = `(16^x - 16^-x)/(16^x + 16^-x)` is


For f(x) = [x] , where [x] is the greatest integer function, which of the following is true, for every x ∈ R.


`int_0^4 x[x]  dx`, where [.] denotes the greatest integer function, equals ______


Inverse of the function y = 5 – 10x is ______.


If z ≠ 0, then `int_(x = 0)^100` [arg | z |] dx is ______.

(where [.] denotes the greatest integer function)


The value of `int_-1^3 (|x - 2| + [x])  dx` is equal to ______.

(where [.] denotes greatest integer function)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×