Advertisements
Advertisements
प्रश्न
Answer the following:
Find f ° g and g ° f: f(x) = 3x – 2, g(x) = x2
उत्तर
f(x) = 3x – 2, g(x) = x2
(f ° g) (x) = f(g(x)) = f(x2) = 3x2 – 2
(g ° f) (x) = g(f(x))
= g(3x – 2)
= (3x – 2)2
= 9x2 – 12x + 4
APPEARS IN
संबंधित प्रश्न
If f(x) = 2x2 + 3, g (x) = 5x − 2, then find f ° g
Verify that f and g are inverse functions of each other, where f(x) = `(x + 3)/(x - 2)`, g(x) = `(2x + 3)/(x - 1)`
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = 5x2
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = 8
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = `sqrt(4x + 5)`
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = 9x3 + 8
If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(3)
If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(2)
If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(0)
If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(– 4)
If f(x) = 2|x| + 3x, then find f(– 5)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(7.2)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(0.5)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(2π), where π = 3.14
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
|x + 4| ≥ 5
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
|x| ≤ 3
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
[x + [x + [x]]] = 9
Answer the following:
Find whether the following function is onto or not.
f : Z → Z defined by f(x) = 6x – 7 for all x ∈ Z
Answer the following:
Find whether the following function is onto or not.
f : R → R defined by f(x) = x2 + 3 for all x ∈ R
Answer the following:
If f(x) = `(x + 3)/(4x - 5)`, g(x) = `(3 + 5x)/(4x - 1)` then show that (f ° g) (x) = x
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
1 < |x − 1| < 4
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
|x2 − x − 6| = x + 2
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
−2 < [x] ≤ 7
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
2[2x − 5] − 1 = 7
For f(x) = [x] , where [x] is the greatest integer function, which of the following is true, for every x ∈ R.
`int_0^4 x[x] dx`, where [.] denotes the greatest integer function, equals ______
If f(x) =x4, g(x) = 6x – 2, then g[f(x)] = ______.
Inverse of the function y = 5 – 10x is ______.
`int_0^3 [x]dx` = ______, where [x] is greatest integer function.
If z ≠ 0, then `int_(x = 0)^100` [arg | z |] dx is ______.
(where [.] denotes the greatest integer function)
The value of `int_-1^3 (|x - 2| + [x]) dx` is equal to ______.
(where [.] denotes greatest integer function)