English

Verify that f and g are inverse functions of each other, where f(x) = x3 + 4, g(x) = x-43 - Mathematics and Statistics

Advertisements
Advertisements

Question

Verify that f and g are inverse functions of each other, where f(x) = x3 + 4, g(x) = `root(3)(x - 4)`

Sum

Solution

f(x) = x3 + 4

Replacing x by g(x), we get

f[g(x)] = [g(x)]3 + 4

= `(root(3)(x - 4))^3 + 4`

= x – 4 + 4 

= x

g(x) = `root(3)(x - 4)`

Replacing x by f(x), we get

g[f(x)] = `root(3)("f"(x) - 4)`

= `root(3)(x^3 + 4 - 4)`

= `root(3)(x^3)`

= x

Since, f[g(x)] = x and g[f(x)] = x.

∴ f and g are inverse functions of each other.

shaalaa.com
Algebra of Functions
  Is there an error in this question or solution?
Chapter 6: Functions - Exercise 6.2 [Page 127]

RELATED QUESTIONS

If f(x) = 2x2 + 3, g(x) = 5x − 2, then find g ° f


If f(x) = 2x2 + 3, g (x) = 5x − 2, then find g ° g


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = 8


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `sqrt(4x + 5)`


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = 9x3 + 8


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `{(x + 7, x < 0),(8 - x, x ≥ 0):}`


If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(3)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find `"f"(- 5/2)`


If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 6)


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

x2 + 7 |x| + 12 = 0


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

|x| ≤ 3


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

2|x| = 5


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

[x + [x + [x]]] = 9


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

{x} > 4


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

{x} = 0


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

2{x} = x + [x]


Answer the following:

Find whether the following function is onto or not.

f : Z → Z defined by f(x) = 6x – 7 for all x ∈ Z


Answer the following:

Find composite of f and g:
f = {(1, 1), (2, 4), (3, 4), (4, 3)}
g = {(1, 1), (3, 27), (4, 64)}


Answer the following:

Find f ° g and g ° f : f(x) = x2 + 5, g(x) = x – 8


Answer the following:

Find f ° g and g ° f: f(x) = 3x – 2, g(x) = x2


Answer the following:

Find f ° g and g ° f: f(x) = 256x4, g(x) = `sqrt(x)`


Answer the following:

If f(x) = `(2x - 1)/(5x - 2), x ≠ 5/2` show that (f ° f) (x) = x


Answer the following:

If f(x) = `(x + 3)/(4x - 5)`, g(x) = `(3 + 5x)/(4x - 1)` then show that (f ° g) (x) = x


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

|x2 − x − 6| = x + 2


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

2[2x − 5] − 1 = 7


For f(x) = [x] , where [x] is the greatest integer function, which of the following is true, for every x ∈ R.


If `a + pi/2 < 2tan^-1x + 3cot^-1x < b`, then a and b are respectively.


If f(x) = `sin^2x + sin^2(x + pi/3) + cosx cos(x + pi/3) and g(5/4) = 1`, then (gof)(x) is equal to: ______ 


Let f(x) = 1 + x, g(x) = x2 + x + 1, then (f + g) (x) at x = 0 is ______.


`int_0^3 [x]dx` = ______, where [x] is greatest integer function.


If z ≠ 0, then `int_(x = 0)^100` [arg | z |] dx is ______.

(where [.] denotes the greatest integer function)


The value of `int_-1^3 (|x - 2| + [x])  dx` is equal to ______.

(where [.] denotes greatest integer function)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×