English

Check if the following function has an inverse function. If yes, find the inverse function. f(x) = 4x+5 - Mathematics and Statistics

Advertisements
Advertisements

Question

Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `sqrt(4x + 5)`

Sum

Solution

f(x) = `sqrt(4x + 5), x ≥ (-5)/4` 

Let f(x1) = (fx2)

∴ `sqrt(4x + 5) = sqrt(4x_2 + 5)`

∴ x1 = x2

∴ f is a one-one function.

f(x) =  `sqrt(4x + 5)` = y, say(y) ≥ 0

Squaring on both sides, we get

y2 = 4x + 5

∴ x = `(y^2 - 5)/4`

∴ For every y we can get x.

∴ f is an onto function.

∴ x = `(y^2 - 5)/4 = f^-1(y)`

Replacing y by x, we get

`f^-1(x) = (x^2 - 5)/4`

shaalaa.com
Algebra of Functions
  Is there an error in this question or solution?
Chapter 6: Functions - Exercise 6.2 [Page 128]

RELATED QUESTIONS

Let f : {2, 4, 5} → {2, 3, 6} and g : {2, 3, 6} → {2, 4} be given by f = {(2, 3), (4, 6), (5, 2)} and g = {(2, 4), (3, 4), (6, 2)}. Write down g ° f


If f(x) = 2x2 + 3, g(x) = 5x − 2, then find f ° f


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = 5x2


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `(6x - 7)/3`


If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(3)


If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(2)


If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(0)


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(1)


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(5)


If f(x) = 2|x| + 3x, then find f(– 5)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(7.2)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(0.5)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find `"f"(- 5/2)`


If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 6)


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

|x − 4| + |x − 2| = 3


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

x2 + 7 |x| + 12 = 0


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

2|x| = 5


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

[x + [x + [x]]] = 9


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

{x} = 0.5


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

2{x} = x + [x]


Answer the following:

Find whether the following function is onto or not.

f : R → R defined by f(x) = x2 + 3 for all x ∈ R


Answer the following:

Find f ° g and g ° f : f(x) = x2 + 5, g(x) = x – 8


Answer the following:

If f(x) = `(2x - 1)/(5x - 2), x ≠ 5/2` show that (f ° f) (x) = x


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

1 < |x − 1| < 4


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

[x − 2] + [x + 2] + {x} = 0


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

`[x/2] + [x/3] = (5x)/6`


Let F(x) = ex, G(x) = e-x and H(x) = G[F(x)], where x is a real variable. Then `"dH"/"dx"`at x = 0 is ______.


If f(x) = `sin^2x + sin^2(x + pi/3) + cosx cos(x + pi/3) and g(5/4) = 1`, then (gof)(x) is equal to: ______ 


If f(x) =x4, g(x) = 6x – 2, then g[f(x)] = ______.


Inverse of the function y = 5 – 10x is ______.


Let f(x) = 1 + x, g(x) = x2 + x + 1, then (f + g) (x) at x = 0 is ______.


If g(x) is the inverse function of f(x) and f'(x) = `1/(1 + x^4)`, then g'(x) is ______.


lf f : [1, ∞) `rightarrow` [2, ∞) is given by f(x) = `x + 1/x`, then f–1(x) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×