English

Answer the following: Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function 1 < |x − 1| < 4 - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

1 < |x − 1| < 4

Sum

Solution

1 < |x − 1| < 4

If x ≥ 1, Ix − 1| = x − 1

If x < 1, lx − 1| = 1 − x

∴ 1 < x − 1 < 4  or 1 < 1 − x < 4

∴ 2 < x < 5 or 0 < − x < 3

∴ 2 < x < 5 or 0 > x > −3

∴ x ∈ (2, 5) or x ∈ (−3, 0)

∴ the solution set is (−3, 0) ∪ (2 ,5).

shaalaa.com
Algebra of Functions
  Is there an error in this question or solution?
Chapter 6: Functions - Miscellaneous Exercise 6.2 [Page 131]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 6 Functions
Miscellaneous Exercise 6.2 | Q II. (39) (a) | Page 131

RELATED QUESTIONS

If f(x) = 2x2 + 3, g(x) = 5x − 2, then find g ° f


Verify that f and g are inverse functions of each other, where f(x) = `(x - 7)/4`, g(x) = 4x + 7


Verify that f and g are inverse functions of each other, where f(x) = x3 + 4, g(x) = `root(3)(x - 4)`


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = 8


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `sqrt(4x + 5)`


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `{(x + 7, x < 0),(8 - x, x ≥ 0):}`


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(– 4)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find `"f"(- 5/2)`


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(2π), where π = 3.14


If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 1)


If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 6)


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

|x − 4| + |x − 2| = 3


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

{x} > 4


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

{x} = 0.5


Answer the following:

Find whether the following function is onto or not.

f : R → R defined by f(x) = x2 + 3 for all x ∈ R


Answer the following:

Find composite of f and g:
f = {(1, 3), (2, 4), (3, 5), (4, 6)}
g = {(3, 6), (4, 8), (5, 10), (6, 12)}


Answer the following:

Find f ° g and g ° f: f(x) = 3x – 2, g(x) = x2


Answer the following:

Find f ° g and g ° f: f(x) = 256x4, g(x) = `sqrt(x)`


Answer the following:

If f(x) = `(2x - 1)/(5x - 2), x ≠ 5/2` show that (f ° f) (x) = x


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

|x2 − 9| + |x2 − 4| = 5


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

−2 < [x] ≤ 7


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

[x2] − 5[x] + 6 = 0


Answer the following:

Find (f ° g) (x) and (g ° f) (x)

f(x) = ex, g(x) = log x


Answer the following:

Find (f ° f) (x) if f(x) = `x/sqrt(1 + x^2)`


Answer the following:

Find (f ° f) (x) if f(x) = `(2x + 1)/(3x - 2)`


The inverse of the function y = `(16^x - 16^-x)/(16^x + 16^-x)` is


If `a + pi/2 < 2tan^-1x + 3cot^-1x < b`, then a and b are respectively.


`int_0^4 x[x]  dx`, where [.] denotes the greatest integer function, equals ______


Inverse of the function y = 5 – 10x is ______.


Let f(x) = 1 + x, g(x) = x2 + x + 1, then (f + g) (x) at x = 0 is ______.


The inverse of f(x) = `2/3 (10^x - 10^-x)/(10^x + 10^-x)` is ______.


If g(x) is the inverse function of f(x) and f'(x) = `1/(1 + x^4)`, then g'(x) is ______.


`int_0^3 [x]dx` = ______, where [x] is greatest integer function.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×