English

Answer the following: Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function |x2 − x − 6| = x + 2 - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

|x2 − x − 6| = x + 2

Sum

Solution

|x2 − x − 6| = x + 2     ...(i)

R.H.S. must be non-negative

∴ x ≥ − 2     ...(ii)

|(x – 3) (x + 2)| = x + 2

∴ (x + 2) |x – 3| = x + 2 as x + 2 ≥ 0

∴ |x – 3| = 1 if x ≠ – 2

∴ x – 3 = ± 1

∴ x = 4 or 2

∴ x = – 2 also satisfies the equation

Solution set = {–2, 2, 4}

shaalaa.com
Algebra of Functions
  Is there an error in this question or solution?
Chapter 6: Functions - Miscellaneous Exercise 6.2 [Page 131]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 6 Functions
Miscellaneous Exercise 6.2 | Q II. (39) (b) | Page 131

RELATED QUESTIONS

If f(x) = 2x2 + 3, g (x) = 5x − 2, then find f ° g


If f(x) = 2x2 + 3, g(x) = 5x − 2, then find g ° f


If f(x) = 2x2 + 3, g(x) = 5x − 2, then find f ° f


Verify that f and g are inverse functions of each other, where f(x) = `(x - 7)/4`, g(x) = 4x + 7


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = 9x3 + 8


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `{(x + 7, x < 0),(8 - x, x ≥ 0):}`


If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(3)


If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(0)


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(– 4)


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(– 3)


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(5)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(7.2)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(0.5)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(2π), where π = 3.14


If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find `"f"(1/4)`


If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 1.2)


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

|x + 4| ≥ 5


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

|x − 4| + |x − 2| = 3


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

x2 + 7 |x| + 12 = 0


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

2|x| = 5


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

[x + [x + [x]]] = 9


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

{x} = 0


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

2{x} = x + [x]


Answer the following:

Find whether the following function is onto or not.

f : Z → Z defined by f(x) = 6x – 7 for all x ∈ Z


Answer the following:

Find composite of f and g:
f = {(1, 1), (2, 4), (3, 4), (4, 3)}
g = {(1, 1), (3, 27), (4, 64)}


Answer the following:

If f(x) = `(2x - 1)/(5x - 2), x ≠ 5/2` show that (f ° f) (x) = x


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

1 < |x − 1| < 4


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

2[2x − 5] − 1 = 7


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(1 - sqrt(1 - sqrt(1 - x^2)`


For f(x) = [x] , where [x] is the greatest integer function, which of the following is true, for every x ∈ R.


`int_0^4 x[x]  dx`, where [.] denotes the greatest integer function, equals ______


If f = {(4, 1), (5, 2), (6, 3)} and g = { (3, 9), (1, 7), (2, 8)}, then gof is ______ 


If f(x) =bx - 7 and f(-1) = 4, then b = ______.


`int_0^3 [x]dx` = ______, where [x] is greatest integer function.


lf f : [1, ∞) `rightarrow` [2, ∞) is given by f(x) = `x + 1/x`, then f–1(x) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×