Advertisements
Advertisements
प्रश्न
Verify the property x × (y + z) = x × y + x × z of rational numbers by taking.
`x = (-2)/3, y = (-4)/6, z = (-7)/9`
उत्तर
Given, `x = (-2)/3, y = (-4)/6, z = (-7)/9`
Now, LHS = x × (y + z)
= `(-2)/3 xx ((-4)/6 + (-7)/9)`
= `(-2)/3 xx ((-4)/6 - 7/9)`
= `(-2)/3 xx ((-12 - 14)/18)`
= `(-2)/3 xx (-26)/18`
= `26/27`
And RHS = x × y + x × z
= `(-2)/3 xx ((-4)/6) + ((-2)/3) xx ((-7)/9)`
= `4/9 + 14/27`
= `(12 + 14)/27`
= `26/27`
∴ LHS = RHS
Hence, x × (y + z) = x × y + x × z
APPEARS IN
संबंधित प्रश्न
Verify the property: x × y = y × x by taking:
Use the distributivity of multiplication of rational numbers over their addition to simplify:
By what number should \[\frac{- 3}{4}\] be multiplied in order to produce \[\frac{2}{3}?\]
Find: `2/5 xx (-3)/7 - 1/14 - 3/7 xx 3/5`.
`1/5 xx [2/7 + 3/8] = [1/5 xx 2/7] +` ______.
Verify the property x + y = y + x of rational numbers by taking
`x = 1/2, y = 1/2`
Verify the property x + y = y + x of rational numbers by taking
`x = (-3)/7, y = 20/21`
Verify the property x + y = y + x of rational numbers by taking
`x = (-2)/5, y = (-9)/10`
Simplify the following by using suitable property. Also name the property.
`(-3)/5 xx {3/7 + ((-5)/6)}`
Verify the property x × (y + z) = x × y + x × z of rational numbers by taking.
`x = (-1)/2, y = 2/3, z = 3/4`