Advertisements
Advertisements
Question
Verify the property x × (y + z) = x × y + x × z of rational numbers by taking.
`x = (-2)/3, y = (-4)/6, z = (-7)/9`
Solution
Given, `x = (-2)/3, y = (-4)/6, z = (-7)/9`
Now, LHS = x × (y + z)
= `(-2)/3 xx ((-4)/6 + (-7)/9)`
= `(-2)/3 xx ((-4)/6 - 7/9)`
= `(-2)/3 xx ((-12 - 14)/18)`
= `(-2)/3 xx (-26)/18`
= `26/27`
And RHS = x × y + x × z
= `(-2)/3 xx ((-4)/6) + ((-2)/3) xx ((-7)/9)`
= `4/9 + 14/27`
= `(12 + 14)/27`
= `26/27`
∴ LHS = RHS
Hence, x × (y + z) = x × y + x × z
APPEARS IN
RELATED QUESTIONS
Verify the property: x × (y × z) = (x × y) × z by taking:
Verify the property: x × (y + z) = x × y + x × z by taking:
Use the distributivity of multiplication of rational numbers over their addition to simplify:
Name the property of multiplication of rational numbers illustrated by the following statements:
Name the property of multiplication of rational numbers illustrated by the following statements:
By what number should we multiply \[\frac{- 1}{6}\] so that the product may be \[\frac{- 23}{9}?\]
By what number should \[\frac{- 3}{4}\] be multiplied in order to produce \[\frac{2}{3}?\]
For rational numbers `a/b, c/d` and `e/f` we have `a/b xx (c/d + e/f)` = ______ + ______.
For every rational numbers x, y and z, x + (y × z) = (x + y) × (x + z).
Simplify the following by using suitable property. Also name the property.
`[1/5 xx 2/15] - [1/5 xx 2/5]`