Advertisements
Advertisements
प्रश्न
When an electron strikes the target in a Coolidge tube, its entire kinetic energy
(a) is converted into a photon
(b) may be converted into a photon
(c) is converted into heat
(d) may be converted into heat.
उत्तर
(b) may be converted into a photon
(d) may be converted into heat
When an electron strikes the target in a Coolidge tube, the kinetic energy of the electron is used in two ways. Some part of the kinetic energy is converted into a photon, while the remaining part gets converted into heat when the electron makes collisions with the atoms of the target. However, the amount of kinetic energy appearing as the photon vary from collision to collision.
APPEARS IN
संबंधित प्रश्न
Monochromatic light of wavelength 632.8 nm is produced by a helium-neon laser. The power emitted is 9.42 mW.
(a) Find the energy and momentum of each photon in the light beam,
(b) How many photons per second, on average, arrive at a target irradiated by this beam? (Assume the beam to have uniform cross-section which is less than the target area), and
(c) How fast does a hydrogen atom have to travel in order to have the same momentum as that of the photon?
A 100 W sodium lamp radiates energy uniformly in all directions. The lamp is located at the centre of a large sphere that absorbs all the sodium light which is incident on it. The wavelength of the sodium light is 589 nm.
(a) What is the energy per photon associated with the sodium light?
(b) At what rate are the photons delivered to the sphere?
(a) An X-ray tube produces a continuous spectrum of radiation with its short wavelength end at 0.45 Å. What is the maximum energy of a photon in the radiation?
(b) From your answer to (a), guess what order of accelerating voltage (for electrons) is required in such a tube?
Estimating the following two numbers should be interesting. The first number will tell you why radio engineers do not need to worry much about photons! The second number tells you why our eye can never ‘count photons’, even in the barely detectable light.
The number of photons emitted per second by a Medium wave transmitter of 10 kW power, emitting radio waves of wavelength 500 m.
Estimating the following two numbers should be interesting. The first number will tell you why radio engineers do not need to worry much about photons! The second number tells you why our eye can never ‘count photons’, even in barely detectable light.
The number of photons entering the pupil of our eye per second corresponding to the minimum intensity of white light that we humans can perceive (∼10−10 W m−2). Take the area of the pupil to be about 0.4 cm2, and the average frequency of white light to be about 6 × 1014 Hz.
In interaction of radiation with matter, radiation behaves as if it is made up of particles called ______.
If E and p are the energy and the momentum of a photon respectively, then on reducing the wavelength of photon
The number of photons per second on an average emitted by the source of monochromatic light of wavelength 600 nm, when it delivers the power of 3.3 × 10−3 watts will be ______ (h = 6.6 × 10−34 Js).
The number of photons per second on an average emitted by the source of monochromatic light of wavelength 600 nm, when it delivers the power of 3.3 × 10−3 watts will be ______ (h = 6.6 × 10−34 Js)
Photons absorbed in matter are converted to heat. A source emitting n photon/sec of frequency ν is used to convert 1 kg of ice at 0°C to water at 0°C. Then, the time T taken for the conversion ______.
- decreases with increasing n, with ν fixed.
- decreases with n fixed, ν increasing.
- remains constant with n and ν changing such that n ν = constant.
- increases when the product n ν increases.
A source of monochromatic light liberates 9 × 1020 photon per second with wavelength 600 nm when operated at 400 W. The number of photons emitted per second with wavelength of 800 nm by the source of monochromatic light operating at same power will be:
The energy of a photon of wavelength 663 nm is ______.
The energy of a photon of wavelength λ is ______.