मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Write the Maclaurin series expansion of the following functions: log(1 – x); – 1 ≤ x ≤ 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Write the Maclaurin series expansion of the following functions:

log(1 – x); – 1 ≤ x ≤ 1

बेरीज

उत्तर

f(x) = log(1 – x), f(0) = 0

f'(x) = `- 1/(1 - x)`, f'(0) = – 1

f''(x) = `- 1/(1 - x)^2`, f''(0) = – 1

f'''(x) = `- 2/(1 - x)^3`, f'''(0) = – 2

fIV(x) = `- 6/(1 - x)^4`, fIV(0) = – 6

Maclaurin ‘s expansion is

f(x) = `sum_("n" = 0)^oo ("f"^(("n"))(0) x^"n")/("n"!)`

= `"f"(0) + ("f'"(0))/(1!) x + ("f''"(0)x^2)/(2!) + ... + ("f"^(("n"))(0)x^"n")/("n"!) + ...`

`log(1 - x) = 0 - 1/(1!) x - 1/(2!) x^2 - 2/(3!) x^3 + ... + 6/(4!) x^4 + ...`

= `- [x + x^2/2 + x^3/3 + x^4/4 + ...]`

shaalaa.com
Series Expansions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Applications of Differential Calculus - Exercise 7.4 [पृष्ठ २५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 7 Applications of Differential Calculus
Exercise 7.4 | Q 1. (iii) | पृष्ठ २५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×