मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Write the Maclaurin series expansion of the following functions: tan–1 (x); – 1 ≤ x ≤ 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Write the Maclaurin series expansion of the following functions:

tan–1 (x); – 1 ≤ x ≤ 1

बेरीज

उत्तर

f(x) = tan–1x, f(0) = 0

f'(x) = `1/(1 + x^2)` f'(0) = 1

= 1 – x2 + x4 – x6 + …..

f”(x) = – 2x + 4x3 – 6x5 + ….. f”(0) = 0

f”'(x) = – 2 + 12x2 – 30x4 + ….. f”(0) = – 2

fIV(x) = 24x – 120x3 + …… fIV(0) = 0

fV(x) = 24 – 360x2 + ….. fV(0) = 24 .

fVI(x) = – 720x + ….. fVI(0) = 0

fVII(x) = – 720 + … fVII(0) = – 720

Maclaurin ‘s expansion is

f(x) = `sum_("n" = 0)^oo ("f"^(("n"))(0)"n"^"n")/("n"!)`

= `"f"(0) + ("f'"(0)x)/(1!) + ("f''"(0) x^2)/(2!) + ("f"^(("n"))(0)x^"n")/("n"!) + ...`

tan–1x = `0 + x/(1!) + 0 + 0 ((-2))/31 x^3 + 24/(5!) x^5 + 0 + ((-720))/(7!) x^7 + ...`

tan–1x = `x - x^3/3 + x^5/5 - x^7/7 + ...`

shaalaa.com
Series Expansions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Applications of Differential Calculus - Exercise 7.4 [पृष्ठ २५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 7 Applications of Differential Calculus
Exercise 7.4 | Q 1. (v) | पृष्ठ २५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×