Advertisements
Advertisements
प्रश्न
`x^2-2ax(4b^2-a^2)=0`
उत्तर
We have, `-2ax=(2b-a)x-(2b+a)x as`
`x^xx[-(4b^2-a^2)]=-(4b^2-a^2)x^2=(2b-a)x xx[-(2b+a)x]`
`∴x^2-2ax-(4b^2-a^2)=0`
⇒` x^2+(2b-a)x-(2b+a)x-(2b-a)(2b+a)=0`
⇒`x[x+(2b-a)]-(2b+a) [x+2b-a]=0`
⇒`[x+(2b-a)][x-(2b+a)]=0`
⇒` x+(2b-a)=0 or x-(2b+a)=0`
`x=-(2b-a) or x=2b+a`
`⇒ x=a -2b or x=a+2b `
Hence, a -2b and a + 2b are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
Check whether the following is the quadratic equation:
(2x - 1)(x - 3) = (x + 5)(x - 1)
In the following, determine whether the given values are solutions of the given equation or not:
x2 - 3x + 2 = 0, x = 2, x = -1
Solve:
(x2 – x)2 + 5(x2 – x) + 4 = 0
Which of the following are quadratic equation in x?
`sqrt2x^2+7x+5sqrt2`
`x/(x-1)+x-1/4=4 1/4, x≠ 0,1`
`4^((x+1))+4^((1-x))=10`
`2^2x-3.2^((x+2))+32=0`
Find the value of x, if a + 7 = 0; b + 10 = 0 and 12x2 = ax – b.
If x = −3 and x = `2/3` are solutions of quadratic equation mx2 + 7x + n = 0, find the values of m and n.
Solve : x4 - 10x2 +9 =0