Advertisements
Advertisements
Question
`3x^2-2sqrt6x+2=0`
Solution
We write, `-2sqrt6x=-sqrt6x ad 3x^2xx2=6x^2=(-sqrt6x)xx(-6)`
∴ `3x^2-2sqrt6x+2=0`
⇒` 3x^2-sqrt6x-sqrt6x+2=0`
⇒ `sqrt3x(sqrt3x-sqrt2)-sqrt2(sqrt3x-sqrt2)=0`
⇒ `(sqrt3x-sqrt2)(sqrt3x-sqrt2)=0`
⇒`(sqrt3x-sqrt2)^2=0`
⇒`sqrt3x-sqrt2=0`
⇒` x=sqrt2/sqrt3=sqrt6/3`
Hence, `sqrt6/3` is the repeated root of the given equation.
APPEARS IN
RELATED QUESTIONS
Check whether the following is quadratic equation or not.
`x^2 - 2x - sqrtx - 5 = 0`
In the following, determine whether the given values are solutions of the given equation or not:
`x+1/x=13/6`, `x=5/6`, `x=4/3`
Solve: x4 – 2x² – 3 = 0.
Find the quadratic equation, whose solution set is:
{−2, 3}
Solve the following equation using the formula:
`sqrt(6)x^2 - 4x - 2sqrt(6) = 0`
`4^((x+1))+4^((1-x))=10`
Solve:
`3sqrt(2x^2) - 5x - sqrt2 = 0`
Examine whether the equation 5x² -6x + 7 = 2x² – 4x + 5 can be put in the form of a quadratic equation.
Check whether the following are quadratic equation:
(2x + 1) (3x – 2) = 6(x + 1) (x – 2)
Solve the following equation by using quadratic equations for x and give your x2 – 5x – 10 = 0