Advertisements
Advertisements
Question
A cash prize of ₹ 1,500 is given to the student standing first in examination of Business Mathematics by a person every year. Find out the sum that the person has to deposit to meet this expense. Rate of interest is 12% p.a.
Solution
Given a = ₹ 1,500
i = 12% = `12/100` = 0.12
P = `"a"/"i" = 1500/0.12` = ₹ 12,500
Hence the person has to deposit ₹ 12,500 to meet this expense.
APPEARS IN
RELATED QUESTIONS
Find the amount of an ordinary annuity of 12 monthly payments of ₹ 1,500 that earns interest at 12% per annum compounded monthly. [(1.01)12 = 1.1262]
Find the present value of ₹ 2,000 per annum for 14 years at the rate of interest of 10% per annum. If the payments are made at the end of each payment period. [(1.1)–14 = 0.2632]
What is the amount of perpetual annuity of ₹ 50 at 5% compound interest per year?
An annuity in which payments are made at the beginning of each payment period is called ___________.
The present value of the perpetual annuity of ₹ 2000 paid monthly at 10% compound interest is ___________.
An equipment is purchased on an installment basis such that ₹ 5000 on the signing of the contract and four-yearly installments of ₹ 3000 each payable at the end of first, second, third and the fourth year. If the interest is charged at 5% p.a find the cash down price. [(1.05)–4 = 0.8227]
Find the amount of an ordinary annuity of ₹ 500 payable at the end of each year for 7 years at 7% per year compounded annually. [(1.07)7 = 1.6058]
Find the amount of an ordinary annuity of ₹ 600 is made at the end of every quarter for 10 years at the rate of 4% per year compounded quarterly. [(1.01)40 = 1.4889]
Find the amount of an annuity of ₹ 2000 payable at the end of every month for 5 years if money is worth 6% per annum compounded monthly. [(1.005)60 = 1.3489]
Machine A costs ₹ 15,000 and machine B costs ₹ 20,000. The annual income from A and B are ₹ 4,000 and ₹ 7,000 respectively. Machine A has a life of 4 years and B has a life of 7 years. Find which machine may be purchased. (Assume discount rate 8% p.a) [(1.08)–4 = 0.7350, (1.08)–7 = 0.5835]