Advertisements
Advertisements
Question
The present value of the perpetual annuity of ₹ 2000 paid monthly at 10% compound interest is ___________.
Options
₹ 2,40,000
₹ 6,00,000
₹ 20,40,000
₹ 2,00,400
Solution
The present value of the perpetual annuity of ₹ 2000 paid monthly at 10% compound interest is ₹ 2,40,000.
APPEARS IN
RELATED QUESTIONS
Find the amount of an ordinary annuity of ₹ 3,200 per annum for 12 years at the rate of interest of 10% per year. [(1.1)12 = 3.1384]
Find the present value of ₹ 2,000 per annum for 14 years at the rate of interest of 10% per annum. If the payments are made at the end of each payment period. [(1.1)–14 = 0.2632]
Find the present value of an annuity of ₹ 900 payable at the end of 6th month for 6 years. The money compounded at 8% per annum. [(1.04)–12 = 0.6252]
What is the present value of an annuity due of ₹ 1,500 for 16 years at 8% per annum? What is the present value of an annuity due of ₹ 1,500 for 16 years at 8% per annum? [(1.08)16 = 3.172]
₹ 5000 is paid as perpetual annuity every year and the rate of C.I. 10%. Then present value P of immediate annuity is __________.
If ‘a’ is the annual payment, ‘n’ is the number of periods and ‘i’ is compound interest for ₹ 1 then future amount of the ordinary annuity is
Find the amount of annuity of ₹ 2000 payable at the end of each year for 4 years of money is worth 10% compounded annually. [(1.1)4 = 1.4641]
An equipment is purchased on an installment basis such that ₹ 5000 on the signing of the contract and four-yearly installments of ₹ 3000 each payable at the end of first, second, third and the fourth year. If the interest is charged at 5% p.a find the cash down price. [(1.05)–4 = 0.8227]
Find the amount of an annuity of ₹ 2000 payable at the end of every month for 5 years if money is worth 6% per annum compounded monthly. [(1.005)60 = 1.3489]
Naveen deposits ₹ 250 at the end of each month in an account that pays an interest of 6% per annum compounded monthly, how many months will be required for the deposit to amount to at least ₹ 6390? [log(1.1278) = 0.0523, log(1.005) = 0.0022]