Advertisements
Advertisements
Question
Example of contingent annuity is ___________.
Options
Installments of payment for a plot of land
An endowment fund to give scholarships to a student
Personal loan from a bank
All the above
Solution
Example of contingent annuity is An endowment fund to give scholarships to a student.
APPEARS IN
RELATED QUESTIONS
Find the amount of an ordinary annuity of ₹ 3,200 per annum for 12 years at the rate of interest of 10% per year. [(1.1)12 = 3.1384]
Find the amount of an ordinary annuity of 12 monthly payments of ₹ 1,500 that earns interest at 12% per annum compounded monthly. [(1.01)12 = 1.1262]
Find the present value of an annuity of ₹ 900 payable at the end of 6th month for 6 years. The money compounded at 8% per annum. [(1.04)–12 = 0.6252]
What is the present value of an annuity due of ₹ 1,500 for 16 years at 8% per annum? What is the present value of an annuity due of ₹ 1,500 for 16 years at 8% per annum? [(1.08)16 = 3.172]
₹ 5000 is paid as perpetual annuity every year and the rate of C.I. 10%. Then present value P of immediate annuity is __________.
The present value of the perpetual annuity of ₹ 2000 paid monthly at 10% compound interest is ___________.
Find the amount of annuity of ₹ 2000 payable at the end of each year for 4 years of money is worth 10% compounded annually. [(1.1)4 = 1.4641]
An equipment is purchased on an installment basis such that ₹ 5000 on the signing of the contract and four-yearly installments of ₹ 3000 each payable at the end of first, second, third and the fourth year. If the interest is charged at 5% p.a find the cash down price. [(1.05)–4 = 0.8227]
Find the amount of an annuity of ₹ 2000 payable at the end of every month for 5 years if money is worth 6% per annum compounded monthly. [(1.005)60 = 1.3489]
Machine A costs ₹ 15,000 and machine B costs ₹ 20,000. The annual income from A and B are ₹ 4,000 and ₹ 7,000 respectively. Machine A has a life of 4 years and B has a life of 7 years. Find which machine may be purchased. (Assume discount rate 8% p.a) [(1.08)–4 = 0.7350, (1.08)–7 = 0.5835]