Advertisements
Advertisements
Question
A coin and a die are tossed. State sample space of following event.
B: Getting a prime number.
Solution
When a coin and a die are tossed the sample space S is given by
S = {H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6}
∴ n(S) = 12
Let B: Getting a prime number
B = {H2, H3, H5, T2, T3, T5}
∴ n(B) = 6.
APPEARS IN
RELATED QUESTIONS
A fair coin is tossed 8 times, find the probability of at least six heads
A coin is tossed 5 times. What is the probability that head appears an even number of times?
A pair of dice is thrown. What is the probability of getting an even number on the first die or a total of 8?
An urn contains 25 balls of which 10 balls are red and the remaining green. A ball is drawn at random from the urn, the colour is noted and the ball is replaced. If 6 balls are drawn in this way, find the probability that:
(i) All the balls are red.
(ii) Not more than 2 balls are green.
(iii) The number of red balls and green balls is equal.
State the sample space and n(S) for the following random experiment.
A coin is tossed twice. If a second throw results in head, a die thrown, otherwise a coin is tossed.
In a bag, there are three balls; one black, one red, and one green. Two balls are drawn one after another with replacement. State sample space and n(S).
A coin and a die are tossed. State sample space of following event.
C: Getting a tail and perfect square.
Find total number of distinct possible outcomes n(S) of the following random experiment.
From a box containing 25 lottery tickets any 3 tickets are drawn at random.
Two dice are thrown. Write favourable Outcomes for the following event.
P: Sum of the numbers on two dice is divisible by 3 or 4.
Two dice are thrown. Write favourable outcomes for the following event.
R: Sum of the numbers on two dice is a prime number.
Also, check whether Events Q and R are mutually exclusive and exhaustive.
Consider an experiment of drawing two cards at random from a bag containing 4 cards marked 5, 6, 7, and 8. Find the sample Space if cards are drawn with replacement.
Consider an experiment of drawing two cards at random from a bag containing 4 cards marked 5, 6, 7, and 8. Find the sample Space if cards are drawn without replacement.
A car manufacturing factory has two plants, X and Y. Plant X manufactures 70% of cars and plant Y manufactures 30%. 80% of the cars at plant X and 90% of the cars at plant Y are rated of standard quality. A car is chosen at random and is found to be of standard quality. What is the probability that it has come from plant X?
A bag contains 5 red marbles and 3 black marbles. Three marbles are drawn one by one without replacement. What is the probability that at least one of the three marbles drawn be black, if the first marble is red?
A lot of 100 watches is known to have 10 defective watches. If 8 watches are selected (one by one with replacement) at random, what is the probability that there will be at least one defective watch?
Refer to Question 74 above. The probability that exactly two of the three balls were red, the first ball being red, is ______.
Two cards are drawn at random from a pack of 52 cards one-by-one without replacement. What is the probability of getting first card red and second card Jack?
A card is drawn at random from a pack of 52 cards. What is the probability that the card drawn is either ace or a king?
A box contains 10 balls, of which 3 are red, 2 are yellow, and 5 are blue. Five balls are randomly selected with replacement. Calculate the probability that fewer than 2 of the selected balls are red?