Advertisements
Advertisements
Question
Consider an experiment of drawing two cards at random from a bag containing 4 cards marked 5, 6, 7, and 8. Find the sample Space if cards are drawn without replacement.
Solution
The bag contains 4 cards marked 5, 6, 7, and 8. Two cards are to be drawn from this bag.
If the two cards are drawn without replacement, then the sample space is
S = {(5, 6), (5, 7), (5, 8), (6, 5), (6, 7), (6, 8), (7, 5), (7, 6), (7, 8), (8, 5), (8, 6), (8, 7)}
APPEARS IN
RELATED QUESTIONS
There are 6% defective items in a large bulk of items. Find the probability that a sample of 8 items will include not more than one defective item.
A fair coin is tossed 8 times, find the probability of exactly 5 heads .
State the sample space and n(S) for the following random experiment.
A coin is tossed twice. If a second throw results in a tail, a die is thrown.
A coin and a die are tossed. State sample space of following event.
A: Getting a head and an even number.
A coin and a die are tossed. State sample space of following event.
B: Getting a prime number.
Two dice are thrown. Write favourable outcomes for the following event.
R: Sum of the numbers on two dice is a prime number.
Also, check whether Events Q and R are mutually exclusive and exhaustive.
Consider an experiment of drawing two cards at random from a bag containing 4 cards marked 5, 6, 7, and 8. Find the sample Space if cards are drawn with replacement.
There are 2 red and 3 black balls in a bag. 3 balls are taken out at random from the bag. Find the probability of getting 2 red and 1 black ball or 1 red and 2 black balls.
Four cards are successively drawn without replacement from a deck of 52 playing cards. What is the probability that all the four cards are kings?
A die is thrown 5 times. Find the probability that an odd number will come up exactly three times.
Three bags contain a number of red and white balls as follows:
Bag 1:3 red balls, Bag 2:2 red balls and 1 white ball
Bag 3:3 white balls.
The probability that bag i will be chosen and a ball is selected from it is `"i"/6`, i = 1, 2, 3. What is the probability that a red ball will be selected?
Three bags contain a number of red and white balls as follows:
Bag 1:3 red balls, Bag 2:2 red balls and 1 white ball
Bag 3:3 white balls.
The probability that bag i will be chosen and a ball is selected from it is `"i"/6`, i = 1, 2, 3. What is the probability that a white ball is selected?
There are two bags, one of which contains 3 black and 4 white balls while the other contains 4 black and 3 white balls. A die is thrown. If it shows up 1 or 3, a ball is taken from the Ist bag; but it shows up any other number, a ball is chosen from the second bag. Find the probability of choosing a black ball.
There are three urns containing 2 white and 3 black balls, 3 white and 2 black balls, and 4 white and 1 black balls, respectively. There is an equal probability of each urn being chosen. A ball is drawn at random from the chosen urn and it is found to be white. Find the probability that the ball drawn was from the second urn.
By examining the chest X ray, the probability that TB is detected when a person is actually suffering is 0.99. The probability of an healthy person diagnosed to have TB is 0.001. In a certain city, 1 in 1000 people suffers from TB. A person is selected at random and is diagnosed to have TB. What is the probability that he actually has TB?
A bag contains (2n + 1) coins. It is known that n of these coins have a head on both sides where as the rest of the coins are fair. A coin is picked up at random from the bag and is tossed. If the probability that the toss results in a head is `31/42`, determine the value of n.
Two dice are thrown. If it is known that the sum of numbers on the dice was less than 6, the probability of getting a sum 3, is ______.
Three horses A, B, Care in a race. A is twice as likely to win as B, and B is twice as likely to win as C. The probability that C wins, P(C) is
In year 2019, the probability of getting 53 Sundays is
Assertion (A): Two coins are tossed simultaneously. The probability of getting two heads, if it is known that at least one head comes up, is `1/3`.
Reason (R): Let E and F be two events with a random experiment, then `P(E/F) = (P(E ∩ F))/(P(E))`.