English
Tamil Nadu Board of Secondary EducationHSC Commerce Class 11

A company manufactures two models of voltage stabilizers viz., ordinary and auto-cut. All components of the stabilizers are purchased from outside sources, assembly and testing is carried out at the - Business Mathematics and Statistics

Advertisements
Advertisements

Question

A company manufactures two models of voltage stabilizers viz., ordinary and auto-cut. All components of the stabilizers are purchased from outside sources, assembly and testing is carried out at the company’s own works. The assembly and testing time required for the two models are 0.8 hours each for ordinary and 1.20 hours each for auto-cut. Manufacturing capacity 720 hours at present is available per week. The market for the two models has been surveyed which suggests a maximum weekly sale of 600 units of ordinary and 400 units of auto-cut. Profit per unit for ordinary and auto-cut models has been estimated at ₹ 100 and ₹ 150 respectively. Formulate the linear programming problem.

Sum

Solution

(i) Variables: Let x1 and x2 denote the number of ordinary and auto-cut voltage stabilized.

(ii) Objective function:

Profit on x1 units of ordinary stabilizers = 100x1

Profit on x2 units of auto-cut stabilized = 150x2

Total profit = 100x1 + 150x2

Let Z = 100x1 + 150x2, which is the objective function.

Since the profit is to be maximized. We have to Maximize, Z = 100x1 + 15x2

(iii) Constraints: The assembling and testing time required for x1 units of ordinary stabilizers = 0.8x1 and for x2 units of auto-cut stabilizers = 1.2x2

Since the manufacturing capacity is 720 hours per week.

We get 0.8x1 + 1.2x2 ≤ 720

Maximum weekly sale of ordinary stabilizer is 600 i.e., x1 ≤ 600

Maximum weekly sales of auto-cut stabilizer is 400 i.e., x2 ≤ 400

(iv) Non-negative restrictions: Since the number of both the types of stabilizers is non-negative, we get x1, x2 ≥ 0.

Thus, the mathematical formulation of the LPP is, Maximize Z = 100x2 + 150x2

Subject to the constraints

0.8x1 + 1.2x2 ≤ 720, x1 ≤ 600, x2 ≤ 400, x1, x2 ≥ 0

shaalaa.com
Linear Programming Problem (L.P.P.)
  Is there an error in this question or solution?
Chapter 10: Operations Research - Exercise 10.1 [Page 244]

APPEARS IN

Samacheer Kalvi Business Mathematics and Statistics [English] Class 11 TN Board
Chapter 10 Operations Research
Exercise 10.1 | Q 3 | Page 244

RELATED QUESTIONS

Find the feasible solution of the following inequation:

3x + 4y ≥ 12, 4x + 7y ≤ 28, y ≥ 1, x ≥ 0.


Find the feasible solution of the following inequation:

x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9,  x ≥ 0, y ≥ 0.


The company makes concrete bricks made up of cement and sand. The weight of a concrete brick has to be at least 5 kg. Cement costs ₹ 20 per kg and sand costs of ₹ 6 per kg. Strength consideration dictates that a concrete brick should contain minimum 4 kg of cement and not more than 2 kg of sand. Form the L.P.P. for the cost to be minimum.


Solve the following LPP:

Maximize z =60x + 50y  subject to

x + 2y ≤ 40, 3x + 2y ≤ 60, x ≥ 0, y ≥ 0.


In a cattle breeding firm, it is prescribed that the food ration for one animal must contain 14, 22, and 1 unit of nutrients A, B, and C respectively. Two different kinds of fodder are available. Each unit weight of these two contains the following amounts of these three nutrients:

Nutrient\Fodder Fodder 1 Fodder2
Nutrient A 2 1
Nutrient B 2 3
Nutrient C 1 1

The cost of fodder 1 is ₹ 3 per unit and that of fodder ₹ 2 per unit. Formulate the L.P.P. to minimize the cost.


Choose the correct alternative :

Which of the following is correct?


Maximize z = 7x + 11y subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0


Choose the correct alternative:

Z = 9x + 13y subjected to constraints 2x + 3y ≤ 18, 2x + y ≤ 10, 0 ≤ x, y was found to be maximum at the point


The minimum value of z = 5x + 13y subject to constraints 2x + 3y ≤ 18, x + y ≥ 10, x ≥ 0, y ≥ 2 is ______ 


For the following shaded region, the linear constraint are:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×