Advertisements
Advertisements
Question
A compound microscope consists of two converging lenses. One of them, of smaller aperture and smaller focal length, is called objective and the other of slightly larger aperture and slightly larger focal length is called eye-piece. Both lenses are fitted in a tube with an arrangement to vary the distance between them. A tiny object is placed in front of the objective at a distance slightly greater than its focal length. The objective produces the image of the object which acts as an object for the eye-piece. The eye-piece, in turn, produces the final magnified image. |
In a compound microscope, the images formed by the objective and the eye-piece are respectively.
Options
virtual, real
real, virtual
virtual, virtual
real, real
Solution
real, virtual
Explanation:
The objective lens generates a real image that is located between the focus and the optical centre of the eye-piece lens. As a result, the eye-piece lens creates a virtual image.
APPEARS IN
RELATED QUESTIONS
Suggest two ways by which the resolving power of a microscope can be increased?
Draw a ray diagram showing the image formation by a compound microscope. Hence obtained expression for total magnification when the image is formed at infinity.
Consider the following two statements :-
(A) Line spectra contain information about atoms.
(B) Band spectra contain information about molecules.
The magnifying power of a converging lens used as a simple microscope is `(1+D/f).` A compound microscope is a combination of two such converging lenses. Why don't we have magnifying power `(1+D/f_0)(1+D/f_0)`?In other words, why can the objective not be treated as a simple microscope but the eyepiece can?
compound microscope consists of two convex lenses of focal length 2 cm and 5 cm. When an object is kept at a distance of 2.1 cm from the objective, a virtual and magnified image is fonned 25 cm from the eye piece. Calculate the magnifying power of the microscope.
What is the advantage of a compound microscope over a simple microscope?
A convex lens of a focal length 5 cm is used as a simple microscope. Where should an object be placed so that the image formed by it lies at the least distance of distinct vision (D = 25 cm)?
A microscope is focussed on a mark on a piece of paper and then a slab of glass of thickness 3 cm and refractive index 1.5 is placed over the mark. How should the microscope be moved to get the mark in focus again?
With the help of a ray diagram, show how a compound microscope forms a magnified image of a tiny object, at least distance of distinct vision. Hence derive an expression for the magnification produced by it.
What is meant by a microscope in normal use?