English

A Convex Lens Made up of Glass of Refractive Index 1.5 is Dipped, in Turn, in (I) a Medium of Refractive Index 1.6, (Ii) a Medium of Refractive Index 1.3.(A) Will It Behave as a Converging Or a - Physics

Advertisements
Advertisements

Question

A convex lens made up of glass of refractive index 1.5 is dipped, in turn, in (i) a medium of refractive index 1.6, (ii) a medium of refractive index 1.3.

(a) Will it behave as a converging or a diverging lens in the two cases?

(b) How will its focal length change in the two media?

Solution

Given Refractive index of glass, μa = 1.5

Refractive index of Ist medium, μ1 = 1.6

Refractive index of IInd medium, μ2 = 1.3

(a) For Ist medium

`mu_1 > mu_a => mu_a/mu_1<1`

Hence, > 0; concave lens or diverging lens

(ii) For IInd medium

`mu_2 > mu_a => mu_a/mu_2<1`

Hence, < 0; convex lens or converging lens

(b)

(i) For first medium,

`1/f_1  = (1-(mu_a)/(mu_1))(1/R_1  - 1/R_2)_(-R_2 >0)^(R_1>0)`

`=(1 - 1.5/1.6)`         (Positive number) for convex lens

`(1-0.9)`                    (Positive number)  

`=(0.1)`                    (Positive number) 

Original focal length

`1/f =(1-mu_0)(1/R_1  - 1/R_2)`

`1/f = -0.5`  (Positive number) 

`=> f_1/f  = -0.5/0.1`

`=> f_1 = -5f`

Hence, focal length will be 5 times the original focal length and its nature will become diverging.

(ii) For second medium

`1/f_2  = (1-(mu_0)/mu_2) (1/R_1 - 1/R_2)`

`=(1 - 1.5/1.3) (1/R_1 - 1/R_2)`

`(1 -1.15)(1/R_1 - 1/R_2)`

`= 0.2 (1/R_1 -1/R_2)`

`=> f_2 /f = (0.2)/(0.1)`

`=> f_2 =2f`

Hence, focal length will be twice the original focal length and its nature (Converging nature) will remain same.

shaalaa.com
  Is there an error in this question or solution?
2010-2011 (March) All India Set 3
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×