Advertisements
Advertisements
Question
Solution
Given:
`chi` = 2.1 × 10−5
To find:
% increase in the magnetic field = ?
We know the magnetic field inside the toroid without lithium
B0 = μ0nI
B0 = μ0H ...(i)
The magnetic field inside the toroid with lithium
B = µH ...(ii)
∴ B − B0 = μH − μ0H
= (μ − μ0)H
∴ The percentage increase in the magnetic field after inserting lithiu m is
% increase in magnetic field
= `(B - B_0)/B_0 xx 100`
= `((mu - mu_0)H)/(mu_0H) xx 100`
% increase in magnetic field
= `(mu - mu_0)/mu_0 xx 100`
But `(mu - mu_0)/mu_0 = chi`
∴ % increase in magnetic field
= `chi xx 100 = 2.1 xx 10^-5 xx 100`
= 0.0021%
APPEARS IN
RELATED QUESTIONS
A solenoid of length π m and 5 cm in diameter has winding of 1000 turns and carries a current of 5 A. Calculate the magnetic field at its center along the axis.
A toroid of a central radius of 10 cm has windings of 1000 turns. For a magnetic field of 5 × 10-2 T along its central axis, what current is required to be passed through its windings?
What is Solenoid?
What is Toroid?
A toroid of 4000 turns has an outer radius of 26 cm and an inner radius of 25 cm. If the current in the wire is 10 A. Calculate the magnetic field of the toroid.
Using Ampere's Law, derive an expression for the magnetic induction inside an ideal solenoid carrying a steady current.
The length of solenoid is I whose windings are made of material of density D and resistivity p. The winding resistance is R. The inductance of solenoid is
[m = mass of winding wire, µ0 = permeability of free space]
A winding wire which is used to frame a solenoid can bear a maximum of 20 A current. If the length of the solenoid is 80 cm and its cross-sectional radius is 3 cm, then the required length of winding wire is ______ (B = 0.2 T)
A toroid has a core (non-ferromagnetic) of inner radius 25 cm and outer radius 26 cm, around which 2,000 turns of a wire are wound. If the current in the wire is 10 A, the magnetic field inside the core of the toroid will be ______
The ratio of magnetic field and magnetic moment at the centre of a current carrying circular loop is x. When both the current and radius is doubled then the ratio will be ______.
A 600 turn coil of effective area 0.05 m2 is kept perpendicular to a magnetic field 4 x 10-5 T. When the plane of the coil is rotated by 90° around any of its coplanar axis in 0.1 s, the e.m.f. induced in the coil will be: ____________.
The magnetic induction along the axis of a toroidal solenoid is independent of ______.
A solenoid of 1.5 m length and 4 cm diameter possesses 20 turns per m. A current of 6 A is flowing through it. The magnetic induction at axis inside the solenoid is ____________.
The space within a current carrying toroid is filled with a m metal of susceptibility 16.5 x 10-6. The percentage increase in the magnetic field B is ____________.
Magnetic induction due to a toroid does not depend upon ______.
A toroid is a long coil of wire wound over a circular core. If 'r' and 'R' are the radii of the coil and toroid respectively, the coefficient of self-induction of the toroid is (The magnetic field in it is uniform and R > > r) ____________.
(N = number of turns of the coil and µ0 = permeability of free space)
The magnetic flux near the axis and inside the air core solenoid of length 60 cm carrying current 'I' is 1.57 × 10-6 Wb. Its magnetic moment will be ______.
(cross-sectional area is very small as compared to length of solenoid, µ0 = 4π × 10-7 SI unit)
A long solenoid carrying current 'I1' produces magnetic field 'B1' along its axis. If the current is reduced to 25% and number of turns per cm are increased four times, then new magnetic field 'B2' is ____________.
A charged particle carrying a charge 'q' and moving with velocity V, enters into a solenoid carrying a current T, along its axis. If 'B' is the magnetic induction along the axis of a solenoid, then the force 'F' acting on the charged particle will be ____________.
A long solenoid has 200 turns per cm and carries a current of 2.5 A. The magnetic field at the center is ______. (µ0 = 4π × 10-7 Wb/m-A)
A straight solenoid has 50 turns per cm in primary and 200 turns per cm in the secondary. The area of cross-section of the solenoid is 4 cm2. The mutual inductance is ______.
Obtain an expression for magnetic induction of a toroid of ‘N’ turns about an axis passing through its centre and perpendicular to its plane.
For a solenoid and a toroid, the number of turns per unit length is n and the respective interior volume is V. The self inductance is proportional to n2 and V for ______.
A current of 10 A passes through a coil having 5 turns and produces magnetic field at the centre of the coil having magnitude 0.5 x 10-4 T. Calculate diameter of the coil.
(µ0 = 4π x 10-7 Wb/Am)