Advertisements
Advertisements
Question
Answer in Brief:
A flywheel used to prepare earthenware pots is set into rotation at 100 rpm. It is in the form of a disc of mass 10 kg and a radius 0.4 m. A lump of clay (to be taken equivalent to a particle) of mass 1.6 kg falls on it and adheres to it at a certain distance x from the center. Calculate x if the wheel now rotates at 80 rpm.
Solution
Given:
f1 = 100 rpm,
f2 = 80 rpm,
M = 10 kg,
R = 0.4 m,
m = 1.6 kg
To find:
Value of x
Solution:
I1 = Iwheel = `1/2"MR"^2 = 1/2(10)(0.4)^2 = 0.8` kg.m2
The MI of the wheel and the lump of clay is
I2 = Iwheel + mx2
By the principle of conservation of angular momentum,
I1ω1 = I2ω2
∴ I1(2πf1) = I2(2πf2)
∴ I2 = Iwheel + mx2 = `"f"_1/"f"_2 "I"_1 = "f"_1/"f"_2 "I"_"wheel"`
∴ `"mx"^2 = ("f"_1/"f"_2 - 1)"I"_"wheel" = (100/80 - 1)(0.8)`
`= (5/4 - 1)(0.8) = 0.2` kg.m2
v = x2 = `0.2/1.6 = 1/8`
∴ x = `1/sqrt8`m = 0.3536 m
APPEARS IN
RELATED QUESTIONS
A thin walled hollow cylinder is rolling down an incline, without slipping. At any instant, without slipping. At any instant, the ratio "Rotational K.E.: Translational K.E.: Total K.E." is ______.
Answer in brief:
Why are curved roads banked?
On what factors does the frequency of a conical pendulum depend? Is it independent of some factors?
While driving along an unbanked circular road, a two-wheeler rider has to lean with the vertical. Why is it so? With what angle the rider has to lean? Derive the relevant expression. Why such a leaning is not necessary for a four wheeler?
Somehow, an ant is stuck to the rim of a bicycle wheel of diameter 1 m. While the bicycle is on a central stand, the wheel is set into rotation and it attains the frequency of 2 rev/s in 10 seconds, with uniform angular acceleration. Calculate:
- The number of revolutions completed by the ant in these 10 seconds.
- Time is taken by it for first complete revolution and the last complete revolution.
The coefficient of static friction between a coin and a gramophone disc is 0.5. Radius of the disc is 8 cm. Initially the center of the coin is 2 cm away from the center of the disc. At what minimum frequency will it start slipping from there? By what factor will the answer change if the coin is almost at the rim? (use g = π2m/s2)
A big dumb-bell is prepared by using a uniform rod of mass 60 g and length 20 cm. Two identical solid spheres of mass 25 g and radius 10 cm each are at the two ends of the rod. Calculate the moment of inertia of the dumb-bell when rotated about an axis passing through its centre and perpendicular to the length.
Does the angle of banking depend on the mass of the vehicle?
During ice ballet, while in the outer rounds, why do the dancers outstretch their arms and legs.
A hollow sphere has a radius of 6.4 m. what is the minimum velocity required by a motorcyclist at the bottom to complete the circle.
A bucket containing water is tied to one end of a rope 5 m long and it is rotated in a vertical circle about the other end. Find the number of rotations per minute in order that the water in the bucket may not spill.
A body weighing 0.5 kg tied to a string is projected with a velocity of 10 m/s. The body starts whirling in a vertical circle. If the radius of the circle is 0.8 m, find the tension in the string when the body is at the top of the circle.
Derive an expression for the kinetic energy of a rotating body with uniform angular velocity.
A railway track goes around a curve having a radius of curvature of 1 km. The distance between the rails is 1 m. Find the elevation of the outer rail above the inner rail so that there is no side pressure against the rails when a train goes around the curve at 36 km/hr.
What is a conical pendulum? Obtain an expression for its time period
A particle undergoes uniform circular motion. The angular momentum of the particle remains conserved about, ______
Give any two examples of torque in day-to-day life.
What is the relation between torque and angular momentum?
Discuss conservation of angular momentum with example.
A flywheel rotates with uniform angular acceleration. If its angular velocity increases from `20pi` rad/s to `40pi` rad/s in 10 seconds. Find the number of rotations in that period.
A uniform metallic rod rotates about its perpendicular bisector with constant angular speed. If it is heated uniformly to raise its temperature to a certain value, its speed of rotation ______.
A wheel of radius 2 cm is at rest on the horizontal surface. A point P on the circumference of the wheel is in contact with the horizontal surface. When the wheel rolls without slipping on the surface, the displacement of point P after half rotation of wheel is ______.
A ring and a disc of different masses are rotating with the same kinetic energy. If we apply a retarding torque τ on the ring, it stops after completing n revolution in all. If the same torque is applied to the disc, how many revolutions would it complete in all before stopping?
What is the difference between rotation and revolution?