English

A girl goes to her friend’s house, which is at a distance of 12 km. She covers half of the distance at a speed of x km/hr and the remaining distance at a speed of (x + 2) km/hr - Mathematics

Advertisements
Advertisements

Question

A girl goes to her friend’s house, which is at a distance of 12 km. She covers half of the distance at a speed of x km/hr and the remaining distance at a speed of (x + 2) km/hr. If she takes 2 hrs 30 minutes to cover the whole distance, find ‘x’.

Sum

Solution

We know

Time=DistanceSpeed

Given, the girl covers a distance of 6 km at a speed x km/hr.

Time taken to cover first 6 km = 6x

Also, the girl covers the remaining 6 km distance at a speed (x + 2) km/hr.

Time taken to cover next 6 km = 6x+2

Total time taken to cover the whole distance = 2 hrs 30 mins

= 23060

= 212

= 52 hrs

6x+6x+2=52

6x+12+6xx(x+2)=52

12+12xx2+2x=52

24 + 24x = 5x2 + 10x

5x2 – 14x – 24 = 0

5x2 – 20x + 6x – 24 = 0

5x(x – 4) + 6(x – 4) = 0

(5x + 6)(x – 4) = 0

x=-65,4

Since, speed cannot be negative.

Therefore, x = 4.

shaalaa.com
Problems Based on Distance, Speed and Time
  Is there an error in this question or solution?
Chapter 6: Solving (simple) Problems (Based on Quadratic Equations) - Exercise 6 (C) [Page 73]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 6 Solving (simple) Problems (Based on Quadratic Equations)
Exercise 6 (C) | Q 5 | Page 73

RELATED QUESTIONS

A car covers a distance of 400 km at a certain speed. Had the speed been 12 km/h more, the time taken for the journey would have been 1 hour 40 minutes less. Find the original speed of the car.


If the speed of a car is increased by 10 km per hr, it takes 18 minutes less to cover a distance of 36 km. Find the speed of the car.


A goods train leaves a station at 6 p.m., followed by an express train which leaved at 8 p.m. and travels 20 km/hour faster than the goods train. The express train arrives at a station, 1040 km away, 36 minutes before the goods train. Assuming that the speeds of both the train remain constant between the two stations; calculate their speeds.


A plane left 30 minutes later than the schedule time and in order to reach its destination 1500 km away in time, it has to increase its speed by 250 km/hr from its usual speed. Find its usual speed.


A bus covers a distance of 240 km at a uniform speed. Due to heavy rain its speed gets reduced by 10 km/h and as such it takes two hrs longer to cover the total distance. Assuming the uniform speed to be 'x' km/h, form an equation and solve it to evaluate 'x'.


A man covers a distance of 100 km, travelling with a uniform speed of x km/hr. Had the speed been 5 km/hr more it would have taken 1 hour less. Find x the original speed.


The given table shows the distance covered and the time taken by a train moving at a uniform speed along a straight track:

Distance (in m) 60 90 y
Time (in sec) 2 x 5

The values of x and y are:


A car travels a distance of 72 km at a certain average speed of x km per hour and then travels a distance of 81 km at an average speed of 6 km per hour more than its original average speed. If it takes 3 hours to complete the total journey then form a quadratic equation and solve it to find its original average speed.


A car is moving with a speed of 100 km/h. If the speed of car first increases by x% and then decreases by x%, the final speed of the car is 96 km/h. The value of x is ______.


The speed of a boat in still water is 15 km/h and speed of stream is 5 km/h. The boat goes x km downstream and then returns back to the point of start is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.