English

A Parallel Plate Capacitor of Capacitance C is Charged to a Potential V. It is Then Connected to Another Uncharged Capacitor Having the Same Capacitance. - Physics

Advertisements
Advertisements

Question

A parallel plate capacitor of capacitance C is charged to a potential V. It is then connected to another uncharged capacitor having the same capacitance. Find out the ratio of the energy stored in the combined system to that stored initially in the single capacitor.

Solution

Let 'q' be the charge on the charged capacitor. Energy stored in it is

`U=q^2/(2C)`

When another similar uncharged capacitor is connected, the net capacitance of the system is C' = 2C

The charge on the system is constant. So, the energy stored in the system now is

`U'=q^2/(2(C"))`

`=>U'=q^2/(2(2C))`

`=>U'=q^2/(4C)`

Thus, the required ratio is

`(U')/U=(q^2/(4C))/(q^2/(2C))`

`=>(U')/U=1/2`

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) All India Set 2

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

(i) Find equivalent capacitance between A and B in the combination given below. Each capacitor is of 2 µF capacitance.

(ii) If a dc source of 7 V is connected across AB, how much charge is drawn from the source and what is the energy stored in the network? 


A parallel-plate capacitor has plate area 25⋅0 cm2 and a separation of 2⋅00 mm between the plates. The capacitor is connected to a battery of 12⋅0 V. (a) Find the charge on the capacitor. (b) The plate separation is decreased to 1⋅00 mm. Find the extra charge given by the battery to the positive plate.


Three capacitors having capacitances 20 µF, 30 µF and 40 µF are connected in series with a 12 V battery. Find the charge on each of the capacitors. How much work has been done by the battery in charging the capacitors?


A cylindrical capacitor is constructed using two coaxial cylinders of the same length 10 cm and of radii 2 mm and 4 mm. (a) Calculate the capacitance. (b) Another capacitor of the same length is constructed with cylinders of radii 4 mm and 8 mm. Calculate the capacitance.


A finite ladder is constructed by connecting several sections of 2 µF, 4 µF capacitor combinations as shown in the figure. It is terminated by a capacitor of capacitance C. What value should be chosen for C, such that the equivalent capacitance of the ladder between the points A and B becomes independent of the number of sections in between?


The separation between the plates of a parallel-plate capacitor is 0⋅500 cm and its plate area is 100 cm2. A 0⋅400 cm thick metal plate is inserted into the gap with its faces parallel to the plates. Show that the capacitance of the assembly is independent of the position of the metal plate within the gap and find its value.


Find the capacitances of the capacitors shown in figure . The plate area is Aand the separation between the plates is d. Different dielectric slabs in a particular part of the figure are of the same thickness and the entire gap between the plates is filled with the dielectric slabs.


Three capacitors C1 = 3μF, C2 = 6μF, and C3 = 10μF are connected to a 50 V battery as  shown in Figure  below:

Calculate:
(i) The equivalent capacitance of the circuit between points A and B.
(ii) The charge on C1.


A capacitor of 4 µ F is connected as shown in the circuit (Figure). The internal resistance of the battery is 0.5 Ω. The amount of charge on the capacitor plates will be ______.


A 5µF capacitor is charged fully by a 220 V supply. It is then disconnected from the supply and is connected in series to another uncharged 2.5 µF capacitor If the energy change during the charge redistribution is `"X"/100`J then value of X to the 100 nearest integer is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×