English
Karnataka Board PUCPUC Science Class 11

A Particle Moves on a Straight Line with a Uniform Velocity. Its Angular Momentum - Physics

Advertisements
Advertisements

Question

A particle moves on a straight line with a uniform velocity. Its angular momentum __________ .

(a) is always zero

(b) is zero about a point on the straight line

(c) is not zero about a point away from the straight line

(d) about any given point remains constant.

Answer in Brief
Fill in the Blanks

Solution

(b) is zero about a point on the straight line

(c) is not zero about a point away from the straight line

(d) about any given point remains constant

 

(b) Angular momentum = \[m\left( \overrightarrow{r} \times \overrightarrow{v} \right)\]

If the point is on the straight line, \[\overrightarrow{r} \text{ and }  \overrightarrow{v}\] will have the same direction and their cross product will be zero. Hence, angular momentum is zero.

(c) If the point is not on the straight line, \[\overrightarrow{r} \text{ and }  \overrightarrow{v}\] will not have the same direction and their cross product will not be zero. Hence, angular momentum is non-zero.

(d) No external torque is applied on the body; therefore, its angular momentum about any given point remains constant.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Rotational Mechanics - MCQ [Page 194]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 10 Rotational Mechanics
MCQ | Q 3 | Page 194

RELATED QUESTIONS

A man stands on a rotating platform, with his arms stretched horizontally holding a 5 kg weight in each hand. The angular speed of the platform is 30 revolutions per minute. The man then brings his arms close to his body with the distance of each weight from the axis changing from 90cm to 20cm. The moment of inertia of the man together with the platform may be taken to be constant and equal to 7.6 kg m2.

(a) What is his new angular speed? (Neglect friction.)

(b) Is kinetic energy conserved in the process? If not, from where does the change come about?


A ball is whirled in a circle by attaching it to a fixed point with a string. Is there an angular rotation of the ball about its centre? If yes, is this angular velocity equal to the angular velocity of the ball about the fixed point?


If the angular momentum of a body is found to be zero about a point, is it necessary that it will also be zero about a different point?


If there is no external force acting on a nonrigid body, which of the following quantities must remain constant?

(a) angular momentum

(b) linear momentum

(c) kinetic energy

(d) moment of inertia.


A disc rotates about its axis with a constant angular acceleration of 4 rad/s2. Find the radial and tangential accelerations of a particle at a distance of 1 cm from the axis at the end of the first second after the disc starts rotating.


Calculate the ratio of the angular momentum of the earth about its axis due to its spinning motion to that about the sun due to its orbital motion. Radius of the earth = 6400 km and radius of the orbit of the earth about the sun = 1⋅5 × 108 km.


Suppose the platform with the kid in the previous problem is rotating in anticlockwise direction at an angular speed ω. The kid starts walking along the rim with a speed \[\nu\] relative to the platform also in the anticlockwise direction. Find the new angular speed of the platform.


A uniform rod of mass m and length l is struck at an end by a force F perpendicular to the rod for a short time interval t. Calculate (a) the speed of the centre of mass, (b) the angular speed of the rod about the centre of mass, (c) the kinetic energy of the rod and (d) the angular momentum of the rod about the centre of mass after the force has stopped to act. Assume that t is so small that the rod does not appreciably change its direction while the force acts.


Two small balls A and B, each of mass m, are joined rigidly by a light horizontal rod of length L. The rod is clamped at the centre in such a way that it can rotate freely about a vertical axis through its centre. The system is rotated with an angular speed ω about the axis. A particle P of mass m kept at rest sticks to the ball A as the ball collides with it. Find the new angular speed of the rod.


Suppose the rod with the balls A and B of the previous problem is clamped at the centre in such a way that it can rotate freely about a horizontal axis through the clamp. The system is kept at rest in the horizontal position. A particle P of the same mass m is dropped from a height h on the ball B. The particle collides with B and sticks to it. (a) Find the angular momentum and the angular speed of the system just after the collision. (b) What should be the minimum value of h so that the system makes a full rotation after the collision.


A uniform wheel of radius R is set into rotation about its axis at an angular speed ω. This rotating wheel is now placed on a rough horizontal surface with its axis horizontal. Because of friction at the contact, the wheel accelerates forward and its rotation decelerates till the wheel starts pure rolling on the surface. Find the linear speed of the wheel after it starts pure rolling.


A thin spherical shell lying on a rough horizontal surface is hits by a cue in such a way that the line of action passes through the centre of the shell. As a result, the shell starts moving with a linear speed \[\nu\] without any initial angular velocity. Find the linear speed of the shell after it starts pure rolling on the surface.


A solid sphere is set into motion on a rough horizontal surface with a linear speed ν in the forward direction and an angular speed ν/R in the anticlockwise directions as shown in the following figure. Find the linear speed of the sphere (a) when it stops rotating and (b) when slipping finally ceases and pure rolling starts.


A solid sphere rolling on a rough horizontal surface with a linear speed ν collides elastically with a fixed, smooth, vertical wall. Find the speed of the sphere after it has started pure rolling in the backward direction.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×