Advertisements
Advertisements
Question
A school bus transported an excursion party to a picnic spot 150 km away. While returning, it was raining and the bus had to reduce its speed by 5 km/hr, and it took one hour longer to make the return trip. Find the time taken to return.
Solution
Distance = 150km
Let the speed of bus = x km/hr
∴ Time taken = `(150)/x"hour"`
On returning speed of the bus = (x - 5)km/hr.
∴ Time taken = `(150)/(x - 5)`
According to the condition
`(150)/(x - 5) - (150)/x` = 1
⇒ `150((1)/(x - 5) - (1)/x)` = 1
⇒ `150((x - x + 5)/(x(x - 5)))` = 1
⇒ `(1500 xx 5)/(x^2 - 5x)` = 1
⇒ x2 - 5x = 750
⇒ x2 - 5x - 750 = 0
⇒ x2 - 30x + 25x - 750 = 0
⇒ x(x - 30) + 25(x - 30) = 0
⇒ (x - 30)(x + 25) = 0
Either x - 30 = 0,
then x = 30
or
x + 25 = 0,
then x = -25,
but it is bot possible as it is negative.
∴ Speed of bus = 30km and time taken while returning
= `(150)/(x - 5)`
= `(150)/(30 - 5)`
= `(150)/(25)`
= 6hours.
APPEARS IN
RELATED QUESTIONS
Solve 2x2 – 9x + 10 =0; when x ∈ Q
The number of quadratic equations having real roots and which do not change by squaring their roots is
Solve the following equation: `(2"x")/("x" - 4) + (2"x" - 5)/("x" - 3) = 25/3`
A two digit number is four times the sum and 3 times the product of its digits, find the number.
Three consecutive natural numbers are such that the square of the first increased by the product of other two gives 154. Find the numbers.
Divide 29 into two parts so that the sum of the square of the parts is 425.
Car A travels x km for every litre of petrol, while car B travels (x + 5) km for every litre of petrol.
If car A use 4 litre of petrol more than car B in covering the 400 km, write down and equation in x and solve it to determine the number of litre of petrol used by car B for the journey.
In each of the following determine whether the given values are solutions of the equation or not.
x2 + `sqrt(2)` - 4 = 0; x = `sqrt(2)`, x = -2`sqrt(2)`
Solve the following equation by factorization
`(1)/(2a + b + 2x) = (1)/(2a) + (1)/b + (1)/(2x)`
If the area of a square is 400 m2, then find the side of the square by the method of factorization.