Advertisements
Advertisements
Question
A television manufacturer finds that the total cost for the production and marketing of x number of television sets is C(x) = 300x2 + 4200x + 13500. If each product is sold for ₹ 8,400. show that the profit of the company is increasing.
Solution
C(x) = 300x2 + 4200x + 13,500
Selling price of one product = ₹ 8,400
Selling price of x numbers of products = 8400x
Profit, P = Selling price – Cost price
= 8400x – (300x2 + 4200x + 13500)
= 8400x – 300x2 – 4200x – 13500
P = - 300x2 + 4200x – 13500
Differentiating with respect to x we get
P'(x) = `"dP"/"dx"` = -600x + 4200
`"dP"/"dx"` = 0 gives -600x + 4200 = 0
- 600x = - 4200
x = 7
The point x = 7 divide the real numbers into the intervals (0, 7), (7, ∞). Here x cannot be negative.
Now P'(x) = – 600x + 4200
Take x = 2 in (0, 7)
P'(2) = - 600 × 2 + 4200
= - 1200 + 4200
= 3000, positive
∴ P'(x) is increasing in (0, 7) the profit of the company increasing when each product is sold for ₹ 8,400.
APPEARS IN
RELATED QUESTIONS
The expenditure Ec of a person with income I is given by Ec = (0.000035) I2 + (0.045) I. Find marginal propensity to consume (MPC) and marginal propensity to save (MPS) when I = 5000. Also find A (average) PC and A (average)
PS.
Evaluate : `int_1^2 1/((x+1)(x+3)) dx`
Find the value of x for which the function `f(x) = x^3 - 3x^2 - 9x + 25` is increasing.
The average cost function associated with producing and marketing x units of an item is given by AC = 2x – 11 + `50/x`. Find the range of values of the output x, for which AC is increasing.
A tour operator charges ₹ 136 per passenger with a discount of 40 paise for each passenger in excess of 100. The operator requires at least 100 passengers to operate the tour. Determine the number of passengers that will maximize the amount of money the tour operator receives.
The total revenue function for a commodity is R `= 15x + x^2/3 - 1/36 x^4`. Show that at the highest point average revenue is equal to the marginal revenue.
The total cost function y for x units is given by y = `4x((x+2)/(x+1)) + 6`. Prove that marginal cost [MC] decreases as x increases.
For the cost function C = 2000 + 1800x - 75x2 + x3 find when the total cost (C) is increasing and when it is decreasing.
The maximum value of f(x) = sin x is:
If f(x, y) is a homogeneous function of degree n, then `x (del "f")/(del x) + "y" (del "f")/(del y)` is equal to: