Advertisements
Advertisements
Question
If f(x, y) is a homogeneous function of degree n, then `x (del "f")/(del x) + "y" (del "f")/(del y)` is equal to:
Options
(n – 1)f
n(n – 1)f
nf
f
Solution
nf
APPEARS IN
RELATED QUESTIONS
A firm wants to maximize its profit. The total cost function is C = 370Q + 550 and revenue is R = 730Q-3Q2. Find the output for which profit is maximum and also find the profit amount at this output.
The total cost function of a firm is `C = x^2 + 75x + 1600` for output x. Find the output (x) for which average
cost is minimum. Is `C_A = C_M` at this output?
Evaluate : `int_1^2 1/((x+1)(x+3)) dx`
In a firm the cost function for output x is given as C = `"x"^3/3 - 20"x"^2 + 70 "x"`. Find the 3 output for which marginal cost (Cm) is minimum.
Find the value of x for which the function `f(x) = x^3 - 3x^2 - 9x + 25` is increasing.
A television manufacturer finds that the total cost for the production and marketing of x number of television sets is C(x) = 300x2 + 4200x + 13500. If each product is sold for ₹ 8,400. show that the profit of the company is increasing.
A tour operator charges ₹ 136 per passenger with a discount of 40 paise for each passenger in excess of 100. The operator requires at least 100 passengers to operate the tour. Determine the number of passengers that will maximize the amount of money the tour operator receives.
The total revenue function for a commodity is R `= 15x + x^2/3 - 1/36 x^4`. Show that at the highest point average revenue is equal to the marginal revenue.
For the cost function C = 2000 + 1800x - 75x2 + x3 find when the total cost (C) is increasing and when it is decreasing.
The maximum value of f(x) = sin x is: