Advertisements
Advertisements
Question
एका बॅगेत 3 लाल, 3 पांढरे व 3 हिरवे चेंडू आहेत. बॅगेतून 1 चेंडू यादृच्छिक पद्धतीने काढला असता खालील घटनेची संभाव्यता काढा.
काढलेला चेंडू लाल असणे.
Solution
समजा, तीन लाल चेंडू R1, R2, R3,
तीन पांढरे चेंडू W1, W2, W3, आणि
तीन हिरवे चेंडू G1, G2, G3 ने दर्शवू.
∴ नमुना अवकाश
S = {R1, R2, R3, W1, W2, W3, G1, G2, G3}
∴ n(S) = 9
समजा,
घटना A: काढलेला चेंडू लाल असणे.
∴ A = {R1, R2, R3}
∴ n(A) = 3
∴ P(A) = `("n"("A"))/("n"("S")) = 3/9`
∴ P(A) = `1/3`
APPEARS IN
RELATED QUESTIONS
पुढील उपप्रश्नासाठी 4 पर्यायी उत्तरे दिली आहेत. त्यापैकी अचूक उत्तराचा पर्याय निवडून त्याचे वर्णाक्षर लिहा.
दोन फासे फेकले असता नमुना घटकांची संख्या ______ आहे.
दोन फासे एकाच वेळी टाकले असता खालील घटनाची संभाव्यता काढा.
पृष्ठभागावरील अंकांची बेरीज 33 असणे.
दोन फासे एकाच वेळी टाकले असता खालील घटनाची संभाव्यता काढा.
पहिल्या फाशावरील अंक दुसऱ्या फाशावरील अंकापेक्षा मोठा असणे.
फुगेवाला 2 लाल, 3 निळे आणि 4 हिरवे अशा रंगीत फुग्यांतील एक फुगा प्रणालीला यादृच्छिक पद्धतीने देणार आहे, तर खालील घटनाची संभाव्यता काढा.
मिळालेला फुगा हिरवा असणे.
एका खोक्यात 5 लाल पेनं, 8 निळी पेनं आणि 3 हिरवी पेनं आहेत. यादृच्छिक पद्धतीने ऋतुजाला एक पेन काढायचे आहे, तर काढलेले पेन निळे असण्याची संभाव्यता काढा.
एका फाशाची सहा पृष्ठे खालीलप्रमाणे आहेत.
हा फासा एकदाच टाकला, तर पुढील घटनाची संभाव्यता काढा.
वरच्या पृष्ठभागावर ‘A’ मिळणे.
एका खोक्यात 30 तिकिटे आहेत. प्रत्येक तिकिटावर 1 ते 30 पैकी एकच संख्या लिहिली आहे. त्यांतून कोणतेही एक तिकीट यादृच्छिक पद्धतीने काढले, तर खालील घटनाची संभाव्यता काढा.
तिकिटावरील संख्या विषम असणे.
0, 1, 2, 3, 4 यांपैकी अंक घेऊन दोन अंकी संख्या तयार करायची आहे. अंकांची पुनरावृत्ती केलेली चालेल, तर खालील घटनाची संभाव्यता काढा.
ती संख्या 4 च्या पटीत असणे.
एका बॅगेत 3 लाल, 3 पांढरे व 3 हिरवे चेंडू आहेत. बॅगेतून 1 चेंडू यादृच्छिक पद्धतीने काढला असता खालील घटनेची संभाव्यता काढा.
काढलेला चेंडू लाल किंवा पांढरा असणे
एक फासा टाकला असता वरच्या पृष्ठभागावर मूळ संख्या मिळण्याची संभाव्यता काढण्याची कृती पूर्ण करून लिहा.
कृती:
एक फासा टाकला असता नमुना अवकाश 'S' आहे.
S = `{square}`
∴ n(S) = 6
घटना A: वरच्या पृष्ठभागावर मूळ संख्या मिळणे.
A = `{square}`
∴ n(A) = 3
∴ P(A) = `square/("n"("S"))` ............(सूत्र)
∴ P(A) = `square`