Advertisements
Advertisements
Question
एका क्रमिकेत tn = 2n - 5 आहे, तर तिची पहिली दोन पदे काढा.
Solution
tn = 2n – 5 ............…[दिले आहे.]
∴ t1 = 2(1) – 5 = 2 – 5 = – 3
t2 = 2(2) – 5 = 4 – 5 = – 1
∴ या क्रमिकेतील पहिली दोन पदे – 3 आणि – 1 आहेत.
APPEARS IN
RELATED QUESTIONS
1 व 140 यांच्या दरम्यान, 4 ने भाग जाणाऱ्या नैसर्गिक संख्यांची बेरीज किती आहे, हे काढण्यासाठी खालील कृती पूर्ण करा.
1 व 140 यांच्या दरम्यान 4 ने भाग जाणाऱ्या संख्यांची बेरीज = `square`
एका अंकगणिती श्रेढीच्या पहिल्या 55 पदांची बेरीज 3300 आहे, तर तिचे 28 वे पद काढा.
एका अंकगणिती श्रेढीतील चार क्रमागत पदांची बेरीज 12 आहे. तसेच, त्या चार क्रमागत पदांपैकी तिसऱ्या व चौथ्या पदांची बेरीज 14 आहे, तर ती चार पदे काढा.
(चार क्रमागत पदे a - d, a, a + d, a + 2d माना.)
पहिल्या 1000 धन पूर्णांकांची बेरीज करा.
कृती: समजा, 1 + 2 + 3 + .........+ 1000
अंकगणिती श्रेढीच्या पहिल्या n पदांच्या बेरजेचे सूत्र Sn = `square` वापरून,
S1000 = `square/2` (1 + 1000)
= 500 × 1001
= `square`
प्रथम 1000 धन पूर्णांकांची बेरीज `square` एवढी आहे.
12, 14, 16, 18, 20, ......... या अंकगणिती श्रेढीच्या पहिल्या 100 पदांची बेरीज करा.
कृती: येथे, a = 12, d = `square` n = 100, S100 = ?
Sn = `"n"/2[square + ("n" - 1)"d"]`
S100 = `square/2`[24 + (100 – 1)d]
= 50 (24 + `square`)
= `square`
= `square`
1 ते 140 यांदरम्यानच्या 4 ने भाग जाणाऱ्या नैसर्गिक संख्यांची बेरीज करा.
कृती: 1 ते 140 यांदरम्यानच्या 4 ने भाग जाणाऱ्या नैसर्गिक संख्या 4, 8, 12, 16......... 136 या आहेत.
येथे, d = 4 आहे. म्हणून, दिलेली क्रमिका ही अंकगणिती श्रेढी आहे.
a = 4, d = 4, tn = 136, Sn = ?
tn = a + (n – 1) d
`square` = 4 + (n – 1) × 4
`square` = (n –1) × 4
n = `square`
आता, Sn = `"n"/2` + [a + tn]
Sn = 17 × `square`
Sn = `square`
म्हणून, 1 ते 140 यांदरम्यानच्या 4 ने भाग जाणाऱ्या नैसर्गिक संख्यांची बेरीज `square` आहे.
4 ने भाग जाणाऱ्या तीन अंकी नैसर्गिक संख्यांची बेरीज काढा.
1 ते 50 मधील सर्व विषम संख्यांची बेरीज करा.
1 ते 140 मधील 4 ने भाग जाणाऱ्या सर्व संख्यांची बेरीज करा.
पहिल्या 'n' सम नैसर्गिक संख्यांची बेरीज करा.