English

एका अंकगणिती श्रेढीतील चार क्रमागत पदांची बेरीज 12 आहे. तसेच, त्या चार क्रमागत पदांपैकी तिसऱ्या व चौथ्या पदांची बेरीज 14 आहे, तर ती चार पदे काढा. - Mathematics 1 - Algebra [गणित १ - बीजगणित]

Advertisements
Advertisements

Question

एका अंकगणिती श्रेढीतील चार क्रमागत पदांची बेरीज 12 आहे. तसेच, त्या चार क्रमागत पदांपैकी तिसऱ्या व चौथ्या पदांची बेरीज 14 आहे, तर ती चार पदे काढा.
(चार क्रमागत पदे a - d, a, a + d, a + 2d माना.)

Sum

Solution

समजा, चार क्रमागत पदे a - d, a, a + d आणि a + 2d आहेत.
दिलेल्या पहिल्या अटीनुसार, त्या चार क्रमागत पदांची बेरीज 12 आहे.

a - d + a + a + d + a + 2d = 12

∴ 4a + 2d = 12

∴ 2(2a + d) = 12

∴ 2a + d = `12/2`

∴ 2a + d = 6   ...(i)

दिलेल्या दुसऱ्या अटीनुसार, तिसऱ्या व चौथ्या क्रमागत पदांची बेरीज 14 आहे.

a + d + a + 2d = 14

∴ 2a + 3d = 14    ....(ii)

समीकरण (ii) मधून समीकरण (i) वजा करून,

2a + 3d = 14
2a + d = 6
-    -       - 
2d = 8

∴ d = `8/2 = 4`

d = 4 ही किंमत समीकरण (i) मध्ये ठेवून,

2a + 4 = 6

∴ 2a = 6 - 4 = 2

∴ a = `2/2 = 1`

∴ a - d = 1 - 4 = - 3

a = 1

a + d = 1 + 4 = 5

a + 2d = 1 + 2(4) = 1 + 8 = 9

∴ चार क्रमागत पदे -3, 1, 5 आणि 9 ही आहेत.

shaalaa.com
अंकगणिती श्रेढीतील पहिल्या n पदांची बेरीज
  Is there an error in this question or solution?
Chapter 3: अंकगणित श्रेढी - सरावसंच 3.3 [Page 73]

APPEARS IN

Balbharati Algebra (Mathematics 1) [Marathi] 10 Standard SSC Maharashtra State Board
Chapter 3 अंकगणित श्रेढी
सरावसंच 3.3 | Q 8. | Page 73

RELATED QUESTIONS

एका अंकगणिती श्रेढीचे पहिले पद 6 व सामान्य फरक 3 आहे तर S27 काढा.

a = 6, d = 3, S27 = ?

`"S"_"n" = "n"/2 [square + ("n" - 1)"d"]`

`"S"_27 = 27/2 [12 + (27 - 1)square]`

`= 27/2 xx square`

= 27 × 45 = `square`


पहिल्या 123 सम नैसर्गिक संख्यांची बेरीज काढा.


एका अंकगणिती श्रेढीतील तीन क्रमागत पदांची बेरीज 27 व त्यांचा गुणाकार 504 आहे, तर ती पदे शोधा.
(तीन क्रमागत पदे a - d, a, a + d माना.)


जर अंकगणिती श्रेढीतील पहिल्या p पदांची बेरीज ही पहिल्या q पदांच्या बेरजेबरोबर असेल, तर त्यांच्या पहिल्या (p + q) पदांची बेरीज शून्य असते हे दाखवा. (p ≠ q).


एका क्रमिकेत tn = 2n - 5 आहे, तर तिची पहिली दोन पदे काढा. 


पहिल्या 1000 धन पूर्णांकांची बेरीज करा.

कृती: समजा, 1 + 2 + 3 + .........+ 1000

अंकगणिती श्रेढीच्या पहिल्या n पदांच्या बेरजेचे सूत्र Sn = `square` वापरून,

S1000 = `square/2` (1 + 1000)

= 500 × 1001

= `square`

प्रथम 1000 धन पूर्णांकांची बेरीज `square` एवढी आहे.


1 ते 140 यांदरम्यानच्या 4 ने भाग जाणाऱ्या नैसर्गिक संख्यांची बेरीज करा.

कृती: 1 ते 140 यांदरम्यानच्या 4 ने भाग जाणाऱ्या नैसर्गिक संख्या 4, 8, 12, 16......... 136 या आहेत.

येथे, d = 4 आहे. म्हणून, दिलेली क्रमिका ही अंकगणिती श्रेढी आहे.

a = 4, d = 4, tn = 136, Sn = ? 

tn = a + (n – 1) d

`square` = 4 + (n – 1) × 4

`square` = (n –1) × 4

n = `square`

आता, Sn = `"n"/2` + [a + tn]

Sn = 17 × `square`

Sn = `square`

म्हणून, 1 ते 140 यांदरम्यानच्या 4 ने भाग जाणाऱ्या नैसर्गिक संख्यांची बेरीज `square` आहे.


4 ने भाग जाणाऱ्या तीन अंकी नैसर्गिक संख्यांची बेरीज काढा.


1 ते 140 मधील 4 ने भाग जाणाऱ्या सर्व संख्यांची बेरीज करा.


1 + 3 + 5 + ......... + 101 या 1 ते 101 पर्यंत विषम नैसर्गिक संख्यांची बेरीज करा.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×