Advertisements
Advertisements
Question
आकृती मध्ये XY || बाजू AC. जर 2AX = 3BX आणि XY = 9 तर AC ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती : 2AX = 3BX
∴ `"AX"/"BX" = square/square`
`("AX" + "BX")/"BX" = (square + square)/square` ......(योग क्रिया करून)
`"AB"/"BX" = square/square` ......(I)
ΔBCA ~ ΔBYX .......(समरूपतेची `square` कसोटी)
∴ `"BA"/"BX" = "AC"/"XY"` ..........(समरूप त्रिकोणाच्या संगत बाजू)
∴ `square/square = "AC"/9`
∴ AC = `square` ..........(I) वरून
Solution
2AX = 3BX ........[पक्ष]
∴ `"AX"/"BX" = 3/2`
∴ `("AX" + "BX")/"BX" = (3 + 2)/2` ......(योग क्रिया करून)
∴ `"AB"/"BX" = 5/2` ......(I) [A-X-B]
ΔBCA व ΔBYX मध्ये,
`{:(∠"BCA" ≅ ∠"BYX"),(∠"BAC" ≅ ∠"BXY"):}}` ....[संगत कोन]
ΔBCA ∼ ΔBYX
∴ ΔBCA ∼ ΔBYX ....[समरूपतेच्या कोको कसोटीनुसार]
∴ `"BA"/"BX" = "AC"/"XY"` ....[समरूप त्रिकोणांच्या संगत बाजू]
∴ `5/2 = "AC"/9` ...[(I) वरून]
∴ AC = `(9 xx 5)/2` ..........[(I) वरून]
∴ AC = 22.5 एकक
APPEARS IN
RELATED QUESTIONS
आकृती मधील त्रिकोण समरूप आहेत का? असतील तर कोणत्या कसोटीनुसार?
समलंब चौकोन ABCD मध्ये, बाजू AB || बाजू DC कर्ण AC व कर्ण BD हे परस्परांना O बिंदूत छेदतात. AB = 20, DC = 6, OB = 15 तर OD काढा.
`square"ABCD"` हा समांतरभुज चौकोन आहे. बाजू BC वर E हा एक बिंदू आहे, रेषा DE ही किरण AB ला T बिंदूत छेदते. तर DE × BE = CE × TE दाखवा.
आकृतीत रेख AC व रेख BD परस्परांना P बिंदूत छेदतात आणि `"AP"/"CP" = "BP"/"DP"` तर सिद्ध करा, ΔABP ∼ ΔCDP.
`square`ABCD मध्ये रेख AD || रेख BC. कर्ण AC आणि कर्ण BD परस्परांना बिंदू P मध्ये छेदतात. तर दाखवा की `"AP"/"PD" = "PC"/"BP"`
खालीलपैकी कोणती कसोटी समरूपतेची नाही?
आकृतीमधील त्रिकोण समरूप आहेत का? असतील तर कोणत्या कसोटीनुसार?
आकृतीमध्ये त्रिकोण ABC मध्ये बाजू BC वर D हा बिंदू असा आहे, की ∠BAC = ∠ADC. तर सिद्ध करा, की CA2 = CB × CD.
चौकोन ABCD मध्ये बाजू AD || BC, कर्ण AC आणि BD परस्परांना P बिंदूत छेदतात, तर सिद्ध करा, की `"AP"/"PD" = "PC"/"BP".`
वरील आकृतीत, ΔABC मध्ये रेख XY || बाजू AC, जर 2AX = 3BX आणि XY = 9, तर AC ची किंमत काढा.