Advertisements
Advertisements
Question
ABC and DBC are two isosceles triangles on the same side of BC. Prove that:
(i) DA (or AD) produced bisects BC at right angle.
(ii) BDA = CDA.
Solution
DA is produced to meet BC in L.
In ΔABC,
AB = AC ...[ Given ]
∴ ∠ACB = ∠ABC.......( i ) ...[ angles opposite to equal sides are equal ]
In ΔDBC,
DB = DC ...[ GIven ]
∴ ∠DCB = ∠DBC......( ii ) ...[ angles opposite to equal sides are equal ]
Subtracting (i) from (ii)
∠DCB - ∠ACB = ∠DBC - ∠ABC
⇒ ∠DCA = ∠DBA......( iii )
In ΔDBA and ΔDCA,
DB = DC ...[ GIven ]
∠DBA = ∠DCA ... [ From ( iii ) ]
AB = AC ...[ Given ]
∴ ΔDBA≅ΔDCA ...[ SAS]
⇒ ∠BDA = ∠CDA.........( iv ) ...[ c. p. c .t ]
In ΔDBA,
∠BAL = ∠DBA + ∠BDA.......( v ) ...[ Ext. angle = sum opp. int. angles]
From (iii), (iv) and (v)
∠BAL = ∠DCA + ∠CDA.....( v i )
In ΔDCA,,
∠CAL = ∠DCA + ∠CDA.......( vii ) ...[ Ext. angle = sum opp. int. angles]
From (vi) and (vii)
∠BAL = ∠CAL.......( viii )
In ΔBAL = ΔCAL,
∠BAL = ∠CAL ...[FROm ( viii ) ]
∠ABL = ∠ACL ...[ From ( i ) ]
AB = AC ...[ Given ]
∴ ΔBAL ΔCAL ...[ ASA]
⇒ ∠ALB = ∠ALC ...{ c. p . c. t ]
and BL = LC........( i x ) ...[ c. p . c .t ]
Now,
∠ALB + ∠ALC = 180°
⇒ ∠ALb + ∠ALB = 180°
⇒ 2∠ALB =180°
⇒ ∠ALB = 90°
∴ AL ⊥ BC
or DL ⊥ BC and BL = LC
∴ DA produced bisects BC at right angle.