English

In the Given Figure, Ab = Ac and ∠Dbc = ∠Ecb = 90o Prove That: Bd = Ce Ad = Ae - Mathematics

Advertisements
Advertisements

Question

In the given figure, AB = AC and ∠DBC = ∠ECB = 90°


Prove that: 
(i) BD = CE 
(ii) AD = AE

Sum

Solution

In ΔABC,
AB = AC ......[Given]
∴ ∠ACB = ∠ABC ......[angles opp. to equal sides are equal]
⇒ ∠ABC = ∠ACB .....(i)

∠DBC = ∠ECB = 90° ......[Given]

⇒ ∠DBC = ∠ECB ….(ii)

Subtracting (i) from (ii)
∠DCB − ∠ABC = ∠ECB − ∠ACB
⇒ ∠DBA = ∠ECA ........(iii)

In ΔDBA and ΔECA,
∠DBA = ∠ECA ......[From (iii)]
∠DAB = ∠EAC .......[Vertically opposite angles]
AB = AC ......[Given]
∴ ΔDBA ≅ ΔECA .......[ASA]
⇒ BD = CE ...[c. p. c. t]
Also,
AD = AE ...[c. p. c. t]

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Isosceles Triangles - Exercise 10 (B) [Page 135]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 10 Isosceles Triangles
Exercise 10 (B) | Q 7 | Page 135
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×