Advertisements
Advertisements
Question
In the given figure, AB = AC and ∠DBC = ∠ECB = 90°
Prove that:
(i) BD = CE
(ii) AD = AE
Sum
Solution
In ΔABC,
AB = AC ......[Given]
∴ ∠ACB = ∠ABC ......[angles opp. to equal sides are equal]
⇒ ∠ABC = ∠ACB .....(i)
∠DBC = ∠ECB = 90° ......[Given]
⇒ ∠DBC = ∠ECB ….(ii)
Subtracting (i) from (ii)
∠DCB − ∠ABC = ∠ECB − ∠ACB
⇒ ∠DBA = ∠ECA ........(iii)
In ΔDBA and ΔECA,
∠DBA = ∠ECA ......[From (iii)]
∠DAB = ∠EAC .......[Vertically opposite angles]
AB = AC ......[Given]
∴ ΔDBA ≅ ΔECA .......[ASA]
⇒ BD = CE ...[c. p. c. t]
Also,
AD = AE ...[c. p. c. t]
shaalaa.com
Is there an error in this question or solution?