Advertisements
Advertisements
Question
∆ABC में, BC = AB और ∠B = 80° है, तब ∠A बराबर है
Options
80°
40°
50°
100°
Solution
50°
स्पष्टीकरण -
दिया गया है, ∆ABC इस प्रकार है कि BC = AB और ∠B = 80° है।
∆ABC में, AB = BC है।
⇒ ∠C = ∠A ...(i) [समान भुजाओं के सम्मुख कोण बराबर होते हैं।]
हम जानते हैं कि, त्रिभुज के सभी कोणों का योग 180° होता है।
∴ ∠A + ∠B + ∠C = 180°
⇒ ∠A + 80° + ∠A = 180° ...[समीकरण (i) से]
⇒ 2∠A = 180° – 80° = 100°
⇒ ∠A = `(100^circ)/2`
⇒ ∠A = 50°
APPEARS IN
RELATED QUESTIONS
यदि △DEF ≅ △BCA हो, तो △BCA के उन भागो को लिखिए जो `bar(DF)` के संगत हो:
∆ABC में, ∠A = 30°, ∠B = 40° और ∠C = 110°, ∆PQR में, ∠P = 30° ∠Q = 40° और ∠R = 110° एक विद्यार्थी कहता है कि A.A.A. सर्वांगसमता प्रतिबन्ध से ∆ABC ≅ ∆PQR है। क्या यह कथन सत्य है? क्यों या क्यों नहीं?
आकृति में दो त्रिभुज ART तथा OWN सर्वांगसम हैं जिसके संगत भागो को अंकित किया गया है। हम लिख सकते है △RAT ≅ ?
∆ABC में, AB = AC और ∠B = 50° है, तब ∠C बराबर है
त्रिभुजों ABC और PQR में, AB = AC, ∠C = ∠P और ∠B = ∠Q है। ये दोनों त्रिभुज हैं
निम्नलिखित आकृति में, D और E त्रिभुज ABC की भुजा BC पर दो बिंदु इस प्रकार स्थित हैं कि BD = CE और AD = AE है। दर्शाइए कि ∆ABD ≅ ∆ACE है।
नीचे दिए गए उदाहरण में त्रिभुजों की जोड़ि के सर्वांगसम घटक एक जैसे चिह्न से दर्शाए गए हैं जोड़ी के त्रिभुज किस कसौटी के आधार पर सर्वांगसम हैं रिक्त स्थानों में वह कसौटी लिखिए।
______ कसौटी से
ΔXYZ ≅ ΔLMN
नीचे दिए गए प्रत्येक उदाहरण में त्रिभुज की जोड़ि के सर्वांगसम घटक एक जैसे चिह्न से दर्शाए गए हैं। त्रिभुज किस कसौटी के आधार पर सर्वांगसम हैं रिक्त स्थानों में वह कसौटी लिखिए।
______ कसौटी से
ΔLMN ≅ ΔPTR
नीचे दिए गए त्रिभु की जोड़ि में दर्शाई गई जानकारी का निरीक्षण कीजिए । वे त्रिभुज किस कसौटी के आधार पर सर्वांगसम हैं शेष सर्वांगसम घटक भी लिखिए ।
आकृति में दर्शाई गई जानकारी के आधार पर,
ΔABC तथा ΔPQR में
∠ABC ≅ ∠PQR
रेख BC ≅ रेख QR
∠ACB ≅ ∠PQR
∴ ΔABC ≅ ΔPQR........... `square` कसौटी
∴ ∠BAC ≅ `square` ....... सर्वांगसम त्रिभुजों के संगत कोण
रेख AB ≅ `square` तथा `square` ≅ रेख PR .....सर्वांगसम त्रिभुज की संगत भुजाएँ
ΔTPQ में ∠T = 65°, ∠P = 95° तो निम्नलिखित में से कौन-सा कथन सत्य है ?