Advertisements
Advertisements
Question
Δ ABC व Δ DEF हे दोन्ही समभुज त्रिकोण आहेत. A (ΔABC) : A (Δ DEF) = 1 : 2 असून AB = 4 तर DE ची लांबी काढा.
Solution
ΔABC व ΔDEF मध्ये,
∠A ≅ ∠D ............[प्रत्येक कोनाचे माप 60°]
∠B ≅ ∠E
∴ ΔABC ∼ ΔDEF ...........[समरूपतेची कोको कसोटी]
∴ `("A"(Δ"ABC"))/("A"(Δ"DEF")) = "AB"^2/"DE"^2` .......[समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय]
∴ `1/2 = 4^2/"DE"^2`
∴ `"DE"^2 = 4^2 xx 2`
∴ DE = `4sqrt(2)` एकक ..........[दोन्ही बाजूंचे वर्गमूळ घेऊन]
APPEARS IN
RELATED QUESTIONS
Δ ABC ~ Δ PQR, A (Δ ABC) = 80, A(Δ PQR) = 125, तर खालील चौकटी पूर्ण करा.
`("A"(Δ "ABC"))/("A"(Δ ....)) = 80/125 = square/square`
∴ `"AB"/"PQ" = square/square`
जर ΔABC ~ ΔDEF आणि ∠A = 45°, ∠E = 35° असल्यास ∠B चे माप किती?
दोन समरूप त्रिकोणांच्या संगत बाजूंचे गुणोत्तर 4:7 आहे, तर त्यांच्या क्षेत्रफळाचे गुणोत्तर किती?
∆ABP ~ ∆DEF आणि A(∆ABP) : A(∆DEF) = 144:81 तर AB:DE = ?
समभुज त्रिकोण PQR ची बाजू 8 सेमी आहे, तर त्या त्रिकोणाच्या बाजूपेक्षा निम्म्या बाजू असणाऱ्या समभुज त्रिकोणाचे क्षेत्रफळ काढा.
दोन समरूप त्रिकोणांची क्षेत्रफळे समान असल्यास ते त्रिकोण एकरूप असतात. सिद्ध करा.
जर ΔABC ∼ ΔPQR, AB : PQ = 4 : 5 आणि A(ΔPQR) = 125 सेमी2 असेल, तर A(ΔABC) काढा.
ΔABC ∼ ΔPQR, ΔABC मध्ये AB = 5.4 सेमी, BC = 4.2 सेमी, AC = 6.0 सेमी, AB : PQ = 3 : 2, तर ΔABC आणि ΔPQR ची रचना करा.
जर ΔABC ∼ ΔPQR आणि `("A"(Delta"ABC"))/(A(Delta"PQR")) = 16/25` तर AB : PQ किती?
ΔABC मध्ये रेख DE || बाजू BC. जर 2A(ΔADE) = A(⬜ DBCE), तर AB : AD आणि BC = `sqrt3` DE दाखवा.