Advertisements
Advertisements
Question
ΔABC मध्ये रेख DE || बाजू BC. जर 2A(ΔADE) = A(⬜ DBCE), तर AB : AD आणि BC = `sqrt3` DE दाखवा.
Solution
पक्ष: ΔABC मध्ये,
रेख DE || बाजू BC
2A(ΔADE) = A(⬜ DBCE)
साध्य:
- AB : AD
- BC = `sqrt3` DE
सिद्धता:
1. A(ΔABC) = A(ΔADE) + A(⬜ DBCE)
= A(ΔADE) + 2A(ΔADE) ...(पक्ष)
2. A(ΔABC) = 3A(ΔADE)
3. `("A"(Delta "ABC"))/("A"(Delta "ADE")) = 3/1`
ΔABC व ΔADE मध्ये,
∠A ≅ ∠A ...(सामाईक कोन)
∠ABC ≅ ∠ADE ...[संगत कोन (DE || BC)]
4. ΔABC ∼ ΔADE ...(को-को कसोटी)
5. `("A"(Delta "ABC"))/("A"(Delta "ADE")) = "AB"^2/"AD"^2` ...(समरूप त्रिकोणांच्या क्षेत्रफळाचा प्रमेय)
6. `3/1 = "AB"^2/"AD"^2`
`sqrt3/1 = "AB"/"AD"`
AB : AD = `sqrt3` : 1
7. ΔABC ∼ ΔADE ...(विधान (4) वरून)
`"AB"/"AD" = "BC"/"DE"` ...(समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय)
`sqrt3/1 = "BC"/"DE"` ...[(4) वरून]
∴ BC = `sqrt3` DE
APPEARS IN
RELATED QUESTIONS
Δ ABC ~ Δ PQR, A (Δ ABC) = 80, A(Δ PQR) = 125, तर खालील चौकटी पूर्ण करा.
`("A"(Δ "ABC"))/("A"(Δ ....)) = 80/125 = square/square`
∴ `"AB"/"PQ" = square/square`
ΔABC व ΔDEF मध्ये ∠B = ∠E, ∠F = ∠C आणि AB = 3 DE, तर त्या दोन त्रिकोणांबाबत सत्य विधान कोणते?
दोन समरूप त्रिकोणांच्या क्षेत्रफळांचे 9 : 25 गुणोत्तर असेल, तर त्यांच्या संगत बाजूंचे गुणोत्तर किती?
जर ∆ABC ~ ∆LMN आणि ∠A = 60° असल्यास ∠L = ?
∆ABC ~ ∆LMN आणि ∠B = 40° तर ∠M चे माप किती? कारण लिहा.
दोन समरूप त्रिकोणांच्या संगत बाजूंचे गुणोत्तर 4:7 आहे, तर त्यांच्या क्षेत्रफळाचे गुणोत्तर किती?
∆ABC ~ ∆PQR, A(∆ABC) = 80 चौ. एकक, A(∆PQR) = 125 चौ. एकक, तर खालील कृती पूर्ण करा.
`("A"(Delta"ABC"))/("A"(Delta"PQR")) = 80/125 = square/square,` म्हणून `"AB"/"PQ" = square/square`
आकृतीमध्ये PM = 10 सेमी, A(∆PQS) = 100 चौसेमी, A(∆QRS) = 110 चौसेमी, तर NR ची लांबी काढा.
∆PQS व ∆QRS यांचा रेख QS हा सामाईक पाया आहे.
सामाईक पाया असणाऱ्या त्रिकोणांची क्षेत्रफळे ही संगत `square` प्रमाणात असतात.
`("A"(Delta"PQS"))/("A"(Delta"QRS")) = square/"NR",`
`100/110 = square/"NR",`
NR = `square` सेमी
∆ABP ~ ∆DEF आणि A(∆ABP) : A(∆DEF) = 144:81 तर AB:DE = ?
∆ABC मध्ये, AP लंब BC व BQ लंब AC, B-P-C, A-Q-C, तर ∆CPA ~ ∆CQB दाखवा. जर AP = 7, BQ = 8, BC = 12 असल्यास AC ची किंमत काढा.
∆CPA व ∆CQB मध्ये,
∠CPA ≅ `square` ...........[प्रत्येकी 90°]
∠ACP ≅ `square` ...........[सामाईक कोन]
∆CPA ~ ∆CQB ............[`square` समरूपता कसोटी]
`"AP"/"BQ" = square/"BC"` ............…[समरूप त्रिकोणांच्या संगत बाजू प्रमाणात]
`7/8 = square/12`
AC × `square` = 7 × 12
AC = 10.5