Advertisements
Advertisements
Question
∆ABC मध्ये, AP लंब BC व BQ लंब AC, B-P-C, A-Q-C, तर ∆CPA ~ ∆CQB दाखवा. जर AP = 7, BQ = 8, BC = 12 असल्यास AC ची किंमत काढा.
∆CPA व ∆CQB मध्ये,
∠CPA ≅ `square` ...........[प्रत्येकी 90°]
∠ACP ≅ `square` ...........[सामाईक कोन]
∆CPA ~ ∆CQB ............[`square` समरूपता कसोटी]
`"AP"/"BQ" = square/"BC"` ............…[समरूप त्रिकोणांच्या संगत बाजू प्रमाणात]
`7/8 = square/12`
AC × `square` = 7 × 12
AC = 10.5
Solution
∆CPA व ∆CQB मध्ये,
∠CPA ≅ ∠CQB ...........[प्रत्येकी 90°]
∠ACP ≅ ∠BCQ ...........[सामाईक कोन]
∆CPA ~ ∆CQB ............[कोको समरूपता कसोटी]
`"AP"/"BQ" = underline("AC")/"BC"` ............…[समरूप त्रिकोणांच्या संगत बाजू प्रमाणात]
`7/8 = underline("AC")/12`
AC × 8 = 7 × 12
AC = `underline((7 xx 12)/8 = (7 xx 3)/2) = 21/2`
AC = 10.5
APPEARS IN
RELATED QUESTIONS
दोन समरूप त्रिकोणांच्या संगत बाजूंचे गुणोत्तर 3 : 5 आहे, तर त्यांच्या क्षेत्रफळांचे गुणोत्तर काढा.
दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी व 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल तर मोठ्या त्रिकोणाची संगत बाजू काढा.
दोन समरूप त्रिकोणांच्या क्षेत्रफळांचे 9 : 25 गुणोत्तर असेल, तर त्यांच्या संगत बाजूंचे गुणोत्तर किती?
∆ABC ~ ∆PQR, A(∆ABC) = 80 चौ. एकक, A(∆PQR) = 125 चौ. एकक, तर खालील कृती पूर्ण करा.
`("A"(Delta"ABC"))/("A"(Delta"PQR")) = 80/125 = square/square,` म्हणून `"AB"/"PQ" = square/square`
∆ABP ~ ∆DEF आणि A(∆ABP) : A(∆DEF) = 144:81 तर AB:DE = ?
दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी, 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल, तर मोठ्या त्रिकोणाची संगत बाजू काढा.
समभुज त्रिकोण PQR ची बाजू 8 सेमी आहे, तर त्या त्रिकोणाच्या बाजूपेक्षा निम्म्या बाजू असणाऱ्या समभुज त्रिकोणाचे क्षेत्रफळ काढा.
दोन समरूप त्रिकोणांची क्षेत्रफळे समान असल्यास ते त्रिकोण एकरूप असतात. सिद्ध करा.
जर ΔABC ∼ ΔPQR, AB : PQ = 4 : 5 आणि A(ΔPQR) = 125 सेमी2 असेल, तर A(ΔABC) काढा.
ΔABC ∼ ΔPQR, ΔABC मध्ये AB = 5.4 सेमी, BC = 4.2 सेमी, AC = 6.0 सेमी, AB : PQ = 3 : 2, तर ΔABC आणि ΔPQR ची रचना करा.