English

त्रिकोणाच्या एका बाजूला समांतर असणारी रेषा त्याच्या उरलेल्या बाजूंना भिन्न बिंदूत छेदत असेल, तर ती रेषा त्या बाजूंना एकाच प्रमाणात विभागते. सिद्धता पूर्ण करा. पक्ष: ∆ABC मध्ये रेषा - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

Question

त्रिकोणाच्या एका बाजूला समांतर असणारी रेषा त्याच्या उरलेल्या बाजूंना भिन्न बिंदूत छेदत असेल, तर ती रेषा त्या बाजूंना एकाच प्रमाणात विभागते. सिद्धता पूर्ण करा.

पक्ष: ∆ABC मध्ये रेषा l || बाजू BC आणि रेषा l ही बाजू AB ला P मध्ये व बाजू AC ला Q मध्ये छेदते.

साध्य: `"AP"/"PB" = "AQ"/"QC"`

रचना: रेख CP व रेख BQ काढा.

सिद्धता:

∆APQ व ∆PQB हे समान उंचीचे त्रिकोण आहेत.

`("A"(Delta"APQ"))/("A"(Delta"PQB")` = `square/"PB"` ..........[क्षेत्रफळे पायांच्या प्रमाणात] (i)

`("A"(Delta"APQ"))/("A"(Delta"PQC")` = `square/"QC"` ..........[क्षेत्रफळे पायांच्या प्रमाणात] (ii)

∆PQC व ∆PQB यांचा रेख `square` हा समान पाया आहे.

रेख PQ || रेख BC म्हणून: ∆∆APQ व ∆PQB यांची उंची समान आहे.

A(∆PQC) = A(∆ `square`) ........….(iii)

`("A"(Delta"APQ"))/("A"(Delta"PQB")` = `("A"(∆ square))/("A"(∆ square))` ..............[(i), (ii) व (iii]

`"AP"/"PB" = "AQ"/"QC"` ......….[(i) व (ii) वरून]

Theorem

Solution

सिद्धता:

∆APQ व ∆PQB हे समान उंचीचे त्रिकोण आहेत.

`("A"(Delta"APQ"))/("A"(Delta"PQB")` = `underline("AP")/"PB"` ..........[क्षेत्रफळे पायांच्या प्रमाणात] (i)

`("A"(Delta"APQ"))/("A"(Delta"PQC")` = `underline("AQ")/"QC"` ..........[क्षेत्रफळे पायांच्या प्रमाणात] (ii)

∆PQC व ∆PQB यांचा रेख PQ हा समान पाया आहे.

रेख PQ || रेख BC म्हणून: ∆APQ व ∆PQB यांची उंची समान आहे.

A(∆PQC) = A(PQB) ........….(iii)

`("A"(Delta"APQ"))/("A"(Delta"PQB")` = `("A"(underline(∆"APQ")))/("A"(underline(∆"PQC")))` ..............[(i), (ii) व (iii]

`"AP"/"PB" = "AQ"/"QC"` ......….[(i) व (ii) वरून] 

shaalaa.com
दोन त्रिकोणांच्या क्षेत्रफळांच्या गुणोत्तराचे गुणधर्म
  Is there an error in this question or solution?
Chapter 1: समरुपता - Q.3 (अ)

APPEARS IN

SCERT Maharashtra Geometry (Mathematics 2) [Marathi] 10 Standard SSC
Chapter 1 समरुपता
Q.3 (अ) | Q २.

RELATED QUESTIONS

दिलेल्या आकृती मध्ये रेख PS ⊥ रेख RQ रेख QT ⊥ रेख PR. जर RQ = 6, PS = 6, PR = 12 तर QT काढा.

 


दिलेल्या आकृतीत, PQ ⊥ BC, AD ⊥ BC तर खालील गुणोत्तरे लिहा.

i) `"A(ΔPQB)"/"A(ΔPBC)"`

ii) `"A(ΔPBC)"/"A(ΔABC)"`

iii) `"A(ΔABC)"/"A(ΔADC)"`

iv) `"A(ΔADC)"/"A(ΔPQC)"`


ΔABC मध्ये B - D – C आणि BD = 7, BC = 20 तर खालील गुणोत्तरे काढा.

  1. `("A"(Δ"ABD"))/("A"(Δ"ADC"))`
  2. `("A"(Δ"ABD"))/("A"(Δ"ABC"))`
  3. `("A"(Δ"ADC"))/("A"(Δ"ABC"))`


समान उंचीच्या दोन त्रिकोणांच्या क्षेत्रफळांचे गुणोत्तर 2 : 3 आहे, लहान त्रिकोणाचा पाया 6 सेमी असेल तर मोठ्या त्रिकोणाचा संगत पाया किती असेल?


आकृती मध्ये ∠ABC = ∠DCB = 90° AB = 6, DC = 8 तर `("A"(Δ"ABC"))/("A"(Δ"DCB"))` = किती?


आकृती मध्ये PM = 10 सेमी A(ΔPQS) = 100 चौसेमी A(ΔQRS) = 110 चौसेमी तर NR काढा.


ΔMNT ~ ΔQRS बिंदू T पासून काढलेल्या शिरोलंबाची लांबी 5 असून बिंदू S पासून काढलेल्या शिरोलंबाची लांबी 9 आहे, तर `("A"(Δ"MNT"))/("A"Δ("QRS"))` हे गुणोत्तर काढा.


∆ABC मध्ये, B-D-C आणि BD = 7, BC = 20, तर खालील गुणोत्तर काढा.

`("A"(Delta"ABD"))/("A"(Delta"ADC"))`

 


∆ABC मध्ये, B-D-C आणि BD = 7, BC = 20, तर खालील गुणोत्तर काढा.

`(A(∆ABD))/(A(∆ABC))`


वास्तू विशारदाकडे इमारतीची प्रतिकृती आहे. प्रत्यक्ष इमारतीची लांबी 1 मीटर असल्यास प्रतिकृतीची लांबी 0.75 सेमी असेल, तर 22.5 मीटर लांबी आणि 10 मीटर उंची असलेल्या इमारतीच्या प्रतिकृतीची लांबी व उंची काढा.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×