Advertisements
Advertisements
Question
दिलेल्या आकृती मध्ये रेख PS ⊥ रेख RQ रेख QT ⊥ रेख PR. जर RQ = 6, PS = 6, PR = 12 तर QT काढा.
Solution
ΔPQR मध्ये, PR हा पाया असून QT ही संगत उंची आहे.
तसेच, RQ हा पाया असून PS ही संगत उंची आहे.
`"A(ΔPQR)"/"A(ΔPQR)" = ("PR" xx "QT")/("RQ" xx "PS")` ............[दोन त्रिकोणांच्या क्षेत्रफळांचे गुणोत्तर हे त्यांच्या पाया व संगत उंची यांच्या गुणाकारांच्या गुणोत्तराएवढे असते.]
∴ `1/1 = ("PR" xx "QT")/("RQ" xx "PS")`
∴ PR × QT = RQ × PS
∴ 12 × QT = 6 × 6
∴ QT = `36/12`
∴ QT = 3 एकक
APPEARS IN
RELATED QUESTIONS
एका त्रिकोणाचा पाया 9 आणि उंची 5 आहे. दुसऱ्या त्रिकोणाचा पाया 10 आणि उंची 6 आहे, तर त्या त्रिकोणांच्या क्षेत्रफळांचे गुणोत्तर काढा.
दिलेल्या आकृती मध्ये BC ⊥ AB, AD ⊥ AB, BC = 4, AD = 8 तर `("A(ΔABC)")/("A(ΔADB)")` काढा.
दिलेल्या आकृतीत, PQ ⊥ BC, AD ⊥ BC तर खालील गुणोत्तरे लिहा.
i) `"A(ΔPQB)"/"A(ΔPBC)"`
ii) `"A(ΔPBC)"/"A(ΔABC)"`
iii) `"A(ΔABC)"/"A(ΔADC)"`
iv) `"A(ΔADC)"/"A(ΔPQC)"`
ΔABC मध्ये B - D – C आणि BD = 7, BC = 20 तर खालील गुणोत्तरे काढा.
- `("A"(Δ"ABD"))/("A"(Δ"ADC"))`
- `("A"(Δ"ABD"))/("A"(Δ"ABC"))`
- `("A"(Δ"ADC"))/("A"(Δ"ABC"))`
समान उंचीच्या दोन त्रिकोणांच्या क्षेत्रफळांचे गुणोत्तर 2 : 3 आहे, लहान त्रिकोणाचा पाया 6 सेमी असेल तर मोठ्या त्रिकोणाचा संगत पाया किती असेल?
आकृती मध्ये PM = 10 सेमी A(ΔPQS) = 100 चौसेमी A(ΔQRS) = 110 चौसेमी तर NR काढा.
ΔMNT ~ ΔQRS बिंदू T पासून काढलेल्या शिरोलंबाची लांबी 5 असून बिंदू S पासून काढलेल्या शिरोलंबाची लांबी 9 आहे, तर `("A"(Δ"MNT"))/("A"Δ("QRS"))` हे गुणोत्तर काढा.
आकृतीमध्ये, AB लंब BC आणि DC लंब BC, AB = 6, DC = 4, तर `("A"(Delta"ABC"))/("A"(Delta"BCD"))` = ?
∆ABC मध्ये, B-D-C आणि BD = 7, BC = 20, तर खालील गुणोत्तर काढा.
`(A(∆ABD))/(A(∆ABC))`
∆ABC मध्ये, B-D-C आणि BD = 7, BC = 20, तर खालील गुणोत्तर काढा.
`("A"(Delta"ADC"))/("A"(Delta"ABC"))`