Advertisements
Advertisements
Question
दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी, 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल, तर मोठ्या त्रिकोणाची संगत बाजू काढा.
Solution
समजा, दोन समरूप त्रिकोणांची क्षेत्रफळे A1 आणि A2 आहेत.
A1 = 225 चौसेमी, A2 = 81 चौसेमी
समजा, मोठ्या व लहान त्रिकोणांच्या संगत बाजू अनुक्रमे S1 व S2 आहेत..
S1 = 12 सेमी
`"A"_1/"A"_2 = "S"_1^2/"S"_2^2` ......[समरूप त्रिकोणांच्या क्षेत्रफळांचे गुणोत्तर]
∴ `225/81 = "S"_2^2/12^2`
∴ `"S"_1^2 = (225 xx 12^2)/81`
∴ S1 = `(15 xx 12)/9` ......[दोन्ही बाजूंचे वर्गमूळ घेऊन]
∴ S1 = 20 सेमी
∴ मोठ्या त्रिकोणाची संगत बाजू 20 सेमी आहे.
APPEARS IN
RELATED QUESTIONS
ΔLMN ~ ΔPQR, 9 × A(ΔPQR) = 16 × A(ΔLMN) जर QR = 20 तर MN काढा.
Δ ABC व Δ DEF हे दोन्ही समभुज त्रिकोण आहेत. A (ΔABC) : A (Δ DEF) = 1 : 2 असून AB = 4 तर DE ची लांबी काढा.
ΔABC व ΔDEF मध्ये ∠B = ∠E, ∠F = ∠C आणि AB = 3 DE, तर त्या दोन त्रिकोणांबाबत सत्य विधान कोणते?
जर ΔABC ~ ΔPQR आणि AB : PQ = 3:4, तर A(ΔABC) : A(ΔPQR) किती?
जर ΔXYZ ~ ΔPQR आणि A(ΔXYZ) = 25 चौसेमी, A(ΔPQR) = 4 चौसेमी, तर XY : PQ = ?
दोन समरूप त्रिकोणांच्या क्षेत्रफळांचे 9 : 25 गुणोत्तर असेल, तर त्यांच्या संगत बाजूंचे गुणोत्तर किती?
जर ΔABC ~ ΔDEF आणि ∠A = 45°, ∠E = 35° असल्यास ∠B चे माप किती?
∆ABP ~ ∆DEF आणि A(∆ABP) : A(∆DEF) = 144:81 तर AB:DE = ?
दोन समरूप त्रिकोणांची क्षेत्रफळे समान असल्यास ते त्रिकोण एकरूप असतात. सिद्ध करा.
जर ΔABC ∼ ΔPQR, AB : PQ = 4 : 5 आणि A(ΔPQR) = 125 सेमी2 असेल, तर A(ΔABC) काढा.