Advertisements
Advertisements
Question
ΔLMN ~ ΔPQR, 9 × A(ΔPQR) = 16 × A(ΔLMN) जर QR = 20 तर MN काढा.
Solution
9 × A(ΔPQR ) = 16 × A(ΔLMN) ........[पक्ष]
∴ `("A"("ΔLMN"))/("A"("ΔPQR")) = 9/16` ..........(i)
आता, ΔLMN ~ ΔPQR .............[पक्ष]
∴ `("A"("ΔLMN"))/("A"("ΔPQR")) = "MN"^2/"QR"^2` .......(ii) [समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय]
∴ `"MN"^2/"QR"^2 = 9/16` ........[(i) व (ii) वरून]
∴ `"MN"/"QR" = 3/4` .....[दोन्ही बाजूंचे वर्गमूळ घेऊन]
∴ `"MN"/20 = 3/4`
∴ MN = `(20 xx 3)/4`
∴ MN = 15 एकक
RELATED QUESTIONS
दोन समरूप त्रिकोणांच्या संगत बाजूंचे गुणोत्तर 3 : 5 आहे, तर त्यांच्या क्षेत्रफळांचे गुणोत्तर काढा.
Δ ABC ~ Δ PQR, A (Δ ABC) = 80, A(Δ PQR) = 125, तर खालील चौकटी पूर्ण करा.
`("A"(Δ "ABC"))/("A"(Δ ....)) = 80/125 = square/square`
∴ `"AB"/"PQ" = square/square`
ΔABC व ΔDEF मध्ये ∠B = ∠E, ∠F = ∠C आणि AB = 3 DE, तर त्या दोन त्रिकोणांबाबत सत्य विधान कोणते?
जर ΔXYZ ~ ΔPQR आणि A(ΔXYZ) = 25 चौसेमी, A(ΔPQR) = 4 चौसेमी, तर XY : PQ = ?
जर ΔABC ~ ΔDEF आणि ∠A = 45°, ∠E = 35° असल्यास ∠B चे माप किती?
दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी, 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल, तर मोठ्या त्रिकोणाची संगत बाजू काढा.
समभुज त्रिकोण PQR ची बाजू 8 सेमी आहे, तर त्या त्रिकोणाच्या बाजूपेक्षा निम्म्या बाजू असणाऱ्या समभुज त्रिकोणाचे क्षेत्रफळ काढा.
जर ΔABC ∼ ΔPQR, AB : PQ = 4 : 5 आणि A(ΔPQR) = 125 सेमी2 असेल, तर A(ΔABC) काढा.
ΔABC ∼ ΔPQR, ΔABC मध्ये AB = 5.4 सेमी, BC = 4.2 सेमी, AC = 6.0 सेमी, AB : PQ = 3 : 2, तर ΔABC आणि ΔPQR ची रचना करा.
जर ∆ABC ~ ∆PQR आणि AB : PQ = 2 : 3, तर `("A" (∆"ABC"))/("A"(∆"PQR"))` ची किंमत काढा.