Advertisements
Advertisements
प्रश्न
ΔLMN ~ ΔPQR, 9 × A(ΔPQR) = 16 × A(ΔLMN) जर QR = 20 तर MN काढा.
उत्तर
9 × A(ΔPQR ) = 16 × A(ΔLMN) ........[पक्ष]
∴ `("A"("ΔLMN"))/("A"("ΔPQR")) = 9/16` ..........(i)
आता, ΔLMN ~ ΔPQR .............[पक्ष]
∴ `("A"("ΔLMN"))/("A"("ΔPQR")) = "MN"^2/"QR"^2` .......(ii) [समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय]
∴ `"MN"^2/"QR"^2 = 9/16` ........[(i) व (ii) वरून]
∴ `"MN"/"QR" = 3/4` .....[दोन्ही बाजूंचे वर्गमूळ घेऊन]
∴ `"MN"/20 = 3/4`
∴ MN = `(20 xx 3)/4`
∴ MN = 15 एकक
संबंधित प्रश्न
Δ ABC ~ Δ PQR, A (Δ ABC) = 80, A(Δ PQR) = 125, तर खालील चौकटी पूर्ण करा.
`("A"(Δ "ABC"))/("A"(Δ ....)) = 80/125 = square/square`
∴ `"AB"/"PQ" = square/square`
ΔABC व ΔDEF हे दोन्ही समभुज त्रिकोण आहेत, A(ΔABC) : A(ΔDEF) = 1 : 2 असून AB = 4 आहे तर DE ची लांबी किती?
जर ΔXYZ ~ ΔPQR आणि A(ΔXYZ) = 25 चौसेमी, A(ΔPQR) = 4 चौसेमी, तर XY : PQ = ?
∆ABC ~ ∆LMN आणि ∠B = 40° तर ∠M चे माप किती? कारण लिहा.
दोन समरूप त्रिकोणांच्या संगत बाजूंचे गुणोत्तर 4:7 आहे, तर त्यांच्या क्षेत्रफळाचे गुणोत्तर किती?
आकृतीमध्ये PM = 10 सेमी, A(∆PQS) = 100 चौसेमी, A(∆QRS) = 110 चौसेमी, तर NR ची लांबी काढा.
∆PQS व ∆QRS यांचा रेख QS हा सामाईक पाया आहे.
सामाईक पाया असणाऱ्या त्रिकोणांची क्षेत्रफळे ही संगत `square` प्रमाणात असतात.
`("A"(Delta"PQS"))/("A"(Delta"QRS")) = square/"NR",`
`100/110 = square/"NR",`
NR = `square` सेमी
दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी, 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल, तर मोठ्या त्रिकोणाची संगत बाजू काढा.
समभुज त्रिकोण PQR ची बाजू 8 सेमी आहे, तर त्या त्रिकोणाच्या बाजूपेक्षा निम्म्या बाजू असणाऱ्या समभुज त्रिकोणाचे क्षेत्रफळ काढा.
जर ΔABC ∼ ΔPQR, AB : PQ = 4 : 5 आणि A(ΔPQR) = 125 सेमी2 असेल, तर A(ΔABC) काढा.
जर ΔABC ∼ ΔPQR आणि `("A"(Delta"ABC"))/(A(Delta"PQR")) = 16/25` तर AB : PQ किती?